
Polyspace® Products for Ada
User's Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Products for Ada User's Guide
© COPYRIGHT 1999–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2008 Online Only Revised for Version 5.1 (Release 2008a)
October 2008 Online Only Revised for Version 5.2 (Release 2008b)
March 2009 Online Only Revised for Version 5.3 (Release 2009a)
September 2009 Online Only Revised for Version 5.4 (Release 2009b)
March 2010 Online Only Revised for Version 5.5 (Release 2010a)
September 2010 Online Only Revised for Version 6.0 (Release 2010b)
April 2011 Online Only Revised for Version 6.1 (Release 2011a)
September 2011 Online Only Revised for Version 6.2 (Release 2011b)
March 2012 Online Only Revised for Version 6.3 (Release 2012a)
September 2012 Online Only Revised for Version 6.4 (Release 2012b)
March 2013 Online Only Revised for Version 6.5 (Release 2013a)
September 2013 Online Only Revised for Version 6.6 (Release 2013b)
March 2014 Online Only Revised for Version 6.7 (Release 2014a)
October 2014 Online Only Revised for Version 6.8 (Release 2014b)
March 2015 Online Only Revised for Version 6.9 (Release 2015a)
September 2015 Online Only Revised for Version 6.10 (Release 2015b)
March 2016 Online Only Revised for Version 6.11 (Release 2016a)
September 2016 Online Only Revised for Version 6.12 (Release 2016b)
March 2017 Online Only Revised for Version 6.13 (Release 2017a)
September 2017 Online Only Revised for Version 6.14 (Release 2017b)
March 2018 Online Only Revised for Version 6.15 (Release 2018a)
September 2018 Online Only Revised for Version 6.16 (Release 2018b)
March 2019 Online Only Revised for Version 6.17 (Release 2019a)
September 2019 Online Only Revised for Version 6.18 (Release 2019b)
March 2020 Online Only Revised for Version 6.19 (Release 2020a)
September 2020 Online Only Revised for Version 6.20 (Release 2020b)
March 2021 Online Only Revised for Version 6.21 (Release 2021a)

Introduction to Polyspace Products
1

Overview of Polyspace Verification . 1-2

The Value of Polyspace Verification . 1-3
Enhance Software Reliability . 1-3
Decrease Development Time . 1-3
Improve the Development Process . 1-4

How Polyspace Verification Works . 1-5
What is Static Verification . 1-5
Exhaustiveness . 1-5

How to Use Polyspace Software
2

Polyspace Verification and the Software Development Cycle 2-2
Software Quality and Productivity . 2-2
Best Practices for Verification Workflow . 2-2

Implementing a Process for Polyspace Verification 2-4
Overview of the Polyspace Process . 2-4
Defining Quality Goals . 2-4
Defining a Verification Process to Meet Your Goals 2-6
Applying Your Verification Process to Assess Code Quality 2-6
Improving Your Verification Process . 2-7

Sample Workflows for Polyspace Verification . 2-8
Overview of Verification Workflows . 2-8
Software Developers – Standard Development Process 2-8
Software Developers – Rigorous Development Process 2-10
Quality Engineers – Code Acceptance Criteria . 2-12
Project Managers — Integrating Polyspace Verification with Configuration

Management Tools . 2-13

Setting Up a Verification Project
3

Create Project . 3-2
Create Project . 3-2

v

Contents

Specify Analysis Options . 3-3
Specify Results Folder . 3-4

Create Project Using Template . 3-5
Use Predefined Template . 3-5
Create Your Own Template . 3-5

Update Project . 3-7
Add Source and Include Folders . 3-7
Manage Include File Sequence . 3-8
Change Analysis Options . 3-8

Modularize Project . 3-10
Create New Module . 3-10
Create Configurations in Module . 3-10

Organize Layout of Polyspace User Interface . 3-12
Create Your Own Layout . 3-12
Save and Reset Layout . 3-12

Customize Results Location and Folder Name . 3-14

Specify External Text Editor . 3-15

Change Default Font Size . 3-16

Choosing Contextual Verification Options . 3-17

Setting Up Project to Generate Metrics . 3-18
About Polyspace Metrics . 3-18
Enabling Polyspace Metrics . 3-18
Specifying Automatic Verification . 3-18

Emulating Your Run-Time Environment
4

Target & Compiler Overview . 4-2

Specifying Target & Compiler Parameters . 4-3

Predefined Target Processor Specifications . 4-4

Main Generator Overview . 4-5

Automatically Generating a Main . 4-6

Manually Generating a Main . 4-7

How Polyspace Verifies Generic Packages . 4-8

vi Contents

Specifying Constraints Using Text Files . 4-9
Constraint File Format . 4-9
Tips for Creating Constraint Files . 4-10
Example Constraint File . 4-10
Warning Messages Related to Constraints . 4-10

Effect of External Constraints on Polyspace Analysis 4-12
Stubbed Functions . 4-12
Stubbed Procedures . 4-13

Performing Efficient Module Testing with Constraints 4-15

Reducing Orange Checks with External Constraints 4-16

Using Pragma Assert to Set Data Ranges . 4-17

Supported Ada Pragmas . 4-18

How Polyspace Evaluates Function and Procedure Parameters 4-19

Preparing Source Code for Verification
5

Stubbing Overview . 5-2

Manual vs. Automatic Stubbing . 5-3
Deciding which Stub Functions to Provide . 5-3
Summary . 5-4

Automatic Stubbing . 5-6

Polyspace Software Assumptions . 5-7

Scheduling Model . 5-8
Example . 5-8
Launching Command . 5-8
Limitation . 5-8

Modelling Synchronous Tasks . 5-9
Problem . 5-9
Explanation . 5-9
Solution 1 . 5-9
Solution 2 . 5-10

Interruptions and Asynchronous Events/Tasks . 5-11
Problem . 5-11
Explanation . 5-11
My interrupts it1 and it2 cannot preempt each other 5-11
My interruptions can preempt each other . 5-11

Are Interruptions Maskable or Preemptive by Default? 5-13
Problem . 5-13

vii

Explanation . 5-13
Solution . 5-13
Original Packages . 5-13
Extra Packages . 5-13
Command Line to Open Polyspace User Interface 5-14

Mailboxes . 5-15
Problem . 5-15
Explanation . 5-15
Solution . 5-15
package mailboxes . 5-16
package body mailboxes . 5-16
procedure receive . 5-16
task body task_1 . 5-16

Atomicity . 5-18
Definitions . 5-18
Instructional Decomposition . 5-18
Critical Sections and Temporal Exclusion . 5-18

Priorities . 5-19

Running a Verification
6

Run Local Verification . 6-2
Start Verification . 6-2
Monitor Progress . 6-2
Stop Verification . 6-2
Open Results . 6-3

Run Remote Verification . 6-4
Start Verification . 6-4
Monitor Progress . 6-4
Stop Verification . 6-5
Open Results . 6-5

Phases of Verification . 6-6

Run File-by-File Local Verification . 6-7
Run Verification . 6-7
Open Results . 6-7

Run File-by-File Remote Verification . 6-9
Run Verification . 6-9
Open Results . 6-9

Manage Job Monitor . 6-11
Purge Server Queue . 6-11
Change Job Monitor Password . 6-11
Share Server Verifications Between Users . 6-12

viii Contents

Run Local Verification at Command Line . 6-14

Run Remote Verification at Command Line . 6-15
Start Verification . 6-15
Manage Verification . 6-15
Download Verification Results from Server . 6-16

Create Command-Line Script from Project File . 6-17
Generate Scripting Files . 6-17
Run an Analysis . 6-17

Troubleshooting Verification
7

Hardware Does Not Meet Requirements . 7-2

Location of Included Files Not Specified . 7-3

Polyspace Software Cannot Find the Server . 7-4

Limit on Assignments and Function Calls . 7-6

Examining the Compile Log . 7-7

Common Compile Errors . 7-8
Missing specification for unit . 7-8
Calendar not found . 7-8
Not a predefined library unit . 7-9
representation clause appears too late . 7-9
Package system and standard include . 7-10
Unsigned type . 7-10
Function not declared in package . 7-10
pre-elaborated unit . 7-11
actual must be a definite subtype . 7-11
'ref attribute . 7-12
Cannot load s-dec.ads (unit not found) . 7-12
Green Hills standard include . 7-13
Package Analysis Limitation . 7-13
Ambiguous Bounds in Discrete Range . 7-14

Error from Special Characters . 7-15
Issue . 7-15
Cause . 7-15
Workaround . 7-15

Verification Time Considerations . 7-16

Displaying Verification Status Information . 7-17

Ideal Application Size . 7-18

Optimum Size . 7-19

ix

Selecting a Subset of Code . 7-20
Results . 7-21
Examples of Removable Components . 7-21
Subdivide According to Data Flow . 7-21
Subdivide According to Real-Time Characteristics 7-22
Subdivide According to Files . 7-23

Benefits of Methods . 7-24
When the Application is Incomplete . 7-24
Application Code Size . 7-24

Obtaining Configuration Information . 7-26

Reasons for Unchecked Code . 7-27
Issue . 7-27
Possible Cause: Early Red or Gray Check . 7-28
Possible Cause: Incorrect Options . 7-29

Storage of Temporary Files . 7-30

Disk Defragmentation and Antivirus Software . 7-31

Out-of-Memory Errors During Report Generation 7-32

Reviewing Verification Results
8

Polyspace Check Colors . 8-2

Verification Following Red and Orange Checks . 8-3
Verification Following Red Check . 8-3
Green Check Following Orange Check . 8-3
Gray Check Following Orange Check . 8-4

Project and Results Folder Contents . 8-5
Files in the Results Folder . 8-5

Result Views in Polyspace User Interface . 8-6
Results List . 8-6
Source . 8-8
Result Details . 8-10
Variable Access . 8-11
Call Hierarchy . 8-13
Concurrency Modeling . 8-15

Why Review Dead Code Checks . 8-16
Functional Bugs in Gray Code . 8-16
Structural Coverage . 8-16

Review Red Checks . 8-18
Step 1: Interpret Check Information . 8-18
Step 2: Determine Root Cause of Check . 8-18

x Contents

Review Gray Checks . 8-20

Review Orange Checks . 8-21
Step 1: Interpret Check Information . 8-21
Step 2: Determine Root Cause of Check . 8-21
Step 3: Trace Check to Polyspace Assumption . 8-23

Review Global Variable Usage . 8-24

CWE Coding Standard and Polyspace for Ada Results 8-25
CWE and Polyspace for Ada . 8-25
Find CWE IDs from Polyspace Results . 8-25

Add Review Comments to Results . 8-27
Assign and Save Comments . 8-27
Import Review Comments from Previous Verifications 8-28

Justify Results Through Code Annotations . 8-30
Add Annotations from the User Interface . 8-30
Type Annotations Directly in Your Code . 8-32
Syntax Examples . 8-34

Define Custom Annotation Format . 8-36
Define Annotation Syntax Format . 8-38
Map Your Annotation to the Polyspace Annotation Syntax 8-42

Annotation Description Full XML Template . 8-44
Example . 8-46

Add Review Comments to Code . 8-49
Enter Code Comments in Specific Syntax . 8-49
Copy Comment Syntax from Polyspace User Interface 8-50

Filter and Group Results . 8-52
Filter Results . 8-52
Group Results . 8-53

Prioritize Check Review . 8-54

Generate Report . 8-55
Specify Report Generation Before Verification . 8-55
Generate Report After Verification . 8-56

Export Results to Text File . 8-58
Export Results . 8-58
View Exported Results . 8-58
Generate Graphs from Results . 8-59

Export Global Variable List . 8-60
Export Variable List to Text File . 8-60
View Exported Variable List . 8-61

Customize Report Templates . 8-62
Create Custom Template . 8-62
Apply Global Filters in Template . 8-62

xi

Override Global Filters . 8-63
Use Custom Template . 8-64

Set Character Encoding Preferences . 8-65

Managing Orange Checks
9

What Is an Orange Check? . 9-2

Sources of Orange Checks . 9-5
Orange Checks from Code . 9-5
Orange Checks from Verification Limitations . 9-5

Do I Have Too Many Orange Checks? . 9-7

Limit Display of Orange Checks . 9-8

Reduce Orange Checks . 9-10
Improve Verification Precision . 9-10
Apply Coding Guidelines . 9-11
Stub Parts of the Code Manually . 9-11
Specify Multitasking Behavior . 9-14

Software Quality with Polyspace Metrics
10

Software Quality with Polyspace Metrics . 10-2

Setting Up Verification to Generate Metrics . 10-3
Specifying Automatic Verification . 10-3

View Polyspace Metrics Project Index . 10-8

Organize Polyspace Metrics Projects . 10-9

Protect Access to Project Metrics . 10-11

Monitor Verification Progress . 10-12

Web Browser Support . 10-13

Review Overall Progress . 10-14

Displaying Metrics for Single Project Version . 10-17

Creating File Module and Specifying Quality Level 10-18

xii Contents

Compare Project Versions . 10-19

Review New Findings . 10-20

Review Run-Time Checks . 10-21
Specifying Download Folder for Polyspace Metrics 10-22
Saving Review Comments and Justifications . 10-22

Fix Defects . 10-23

Review Code Metrics . 10-24

Customizing Software Quality Objectives . 10-25
About Customizing Software Quality Objectives 10-25
SQO Level 2 . 10-25
SQO Level 3 . 10-26
SQO Level 4 . 10-26
SQO Level 5 . 10-26
SQO Level 6 . 10-26
SQO Exhaustive . 10-27
Run-Time Checks Set 1 . 10-27
Run-Time Checks Set 2 . 10-27
Run-Time Checks Set 3 . 10-28
Status Acronyms . 10-28

Tips for Administering Results Repository . 10-30
Through the Polyspace Metrics Web Interface 10-30
Through the Command Line . 10-30
Backup of Results Repository . 10-31

Verifying Code in the Eclipse IDE
11

Install Polyspace Plug-In for Eclipse IDE . 11-2

Configure Verification . 11-5
Prerequisites . 11-5
Specify Verification Options . 11-5
Next Steps . 11-5

Run Verification . 11-6
Prerequisites . 11-6
Start, Monitor and Stop Verification . 11-6
Next Steps . 11-7

Review Results . 11-8
Prerequisites . 11-8
Review Results . 11-8
Save Multiple Results . 11-8

xiii

Glossary

xiv Contents

Introduction to Polyspace Products

• “Overview of Polyspace Verification” on page 1-2
• “The Value of Polyspace Verification” on page 1-3
• “How Polyspace Verification Works” on page 1-5

1

Overview of Polyspace Verification
Polyspace products verify C, C++, and Ada code by detecting run-time errors before code is compiled
and executed. Polyspace verification uses formal methods not only to detect errors, but to prove
mathematically that certain classes of run-time errors do not exist.

To verify the source code, you set up verification parameters in a project, run the verification, and
review the results. A graphical user interface helps you to efficiently review verification results. The
software assigns a color to operations in the source code as follows:

• Green – Indicates that an operation is proven to not have certain kinds of error.
• Red – Indicates that an operation is proven to have at least one error.
• Gray – Indicates unreachable code.
• Orange – Indicates that the operation can have an error along some execution paths.

The color-coding helps you to quickly identify errors and find the exact location of an error in the
source code. After you fix errors, you can easily run the verification again.

1 Introduction to Polyspace Products

1-2

The Value of Polyspace Verification

In this section...
“Enhance Software Reliability” on page 1-3
“Decrease Development Time” on page 1-3
“Improve the Development Process” on page 1-4

Enhance Software Reliability
Polyspace software enhances the reliability of your Ada applications by proving code correctness and
identifying run-time errors. Using advanced verification techniques, Polyspace software performs an
exhaustive verification of your source code.

Polyspace software can:

• Prove that your code has certain kinds of errors.
• Prove that your code does not have certain kinds of errors.
• Identify unreachable code.
• Identify code that can have an error along some execution paths.

With this information, you know how much of your code does not contain run-time errors, and you
can improve the reliability of your code by fixing the errors.

Decrease Development Time
Polyspace software reduces development time by automating the verification process and helping you
to efficiently review verification results. You can use it at any point in the development process, but
using it during early coding phases allows you to find errors when it is less costly to fix them.

You use Polyspace software to verify Ada source code before compile time. To verify the source code,
you set up verification parameters in a project, run the verification, and review the results. This
process takes significantly less time than using manual methods or using tools that require you to
modify code or run test cases.

Color-coding helps you to quickly identify errors. You will spend less time debugging because you can
see the exact location of an error in the source code. After you fix errors, you can easily run the
verification again.

Polyspace verification software helps you to use your time effectively. Because you know the parts of
your code that do not have errors, you can focus on the code with proven (red code) or potential
errors (orange code).

Reviewing the code that might have errors (orange code) can be time-consuming, but Polyspace
software helps you with the review process. You can use filters to focus on certain types of errors or
you can allow the software to identify the code that you should review.

 The Value of Polyspace Verification

1-3

Improve the Development Process
Polyspace software makes it easy to share verification parameters and results, allowing the
development team to work together to improve product reliability. Once verification parameters have
been set up, developers can reuse them for other files in the same application.

Polyspace verification software supports code verification throughout the development process:

• An individual developer can find and fix run-time errors during the initial coding phase.
• Quality assurance can check overall reliability of an application.
• Managers can monitor application reliability by generating reports from the verification results.

1 Introduction to Polyspace Products

1-4

How Polyspace Verification Works
Polyspace software uses static verification to prove the absence of run-time errors. Static verification
derives the dynamic properties of a program without actually executing it. This technique differs
significantly from other techniques, such as run-time debugging, in that the verification it provides is
not based on a given test case or set of test cases. The dynamic properties obtained in the Polyspace
verification are true for all executions of the software.

What is Static Verification
Static verification is a broad term, and is applicable to any tool which derives dynamic properties of a
program without actually executing it. However, most static verification tools only verify the
complexity of the software, in a search for constructs which may be potentially erroneous. Polyspace
verification provides deep-level verification identifying most run-time errors and possible access
conflicts on global shared data.

Polyspace verification works by approximating the software under verification, using representative
approximations of software operations and data.

For example, consider the following code:

for (i=0 ; i<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable i does not overflow the range of tab, a traditional approach would be to
enumerate each possible value of i. One thousand checks would be required.

Using the static verification approach, the variable i is modelled by its domain variation. For
instance, the model of i is that it belongs to the [0..999] static interval. (Depending on the complexity
of the data, convex polyhedrons, integer lattices and more elaborate models are also used for this
purpose).

An approximation usually leads to information loss. For instance, the information that i is
incremented by one every cycle in the loop is lost. However, the important fact is that this information
is not required to ensure that a range error will not occur; it is only necessary to prove that the
domain variation of i is smaller than the range of tab. Only one check is required to establish that —
and hence the gain in efficiency compared to traditional approaches.

Static code verification has an exact solution. However, this exact solution is not practical, as it would
require the enumeration of all possible test cases. As a result, approximation is required for a usable
tool.

Exhaustiveness
Nothing is lost in terms of exhaustiveness. The reason is that Polyspace verification works by
performing upper approximations. In other words, the computed variation domain of a program
variable is a superset of its actual variation domain. The direct consequence is that a runtime error
(RTE) item to be checked cannot be missed by Polyspace verification.

 How Polyspace Verification Works

1-5

How to Use Polyspace Software

• “Polyspace Verification and the Software Development Cycle” on page 2-2
• “Implementing a Process for Polyspace Verification” on page 2-4
• “Sample Workflows for Polyspace Verification” on page 2-8

2

Polyspace Verification and the Software Development Cycle
In this section...
“Software Quality and Productivity” on page 2-2
“Best Practices for Verification Workflow” on page 2-2

Software Quality and Productivity
The goal of most software development teams is to maximize both quality and productivity. However,
when developing software, you must consider the following factors:

• Cost
• Quality
• Time

Changing the requirements for one of these factors can impact the other two.

Generally, the criticality of your application determines the balance between these three variables –
your quality model. With classical testing processes, development teams generally try to achieve their
quality model by testing the modules in an application until each module meets the required quality
level. Unfortunately, this process often ends before quality requirements are met, because the
available time or budget has been exhausted.

Polyspace verification allows a different process. Polyspace verification can support both productivity
improvement and quality improvement at the same time, although you have to reach a balance
between these goals.

To achieve maximum quality and productivity, however, you cannot simply perform code verification
at the end of the development process. You must integrate verification into your development
process, in a way that respects time and cost restrictions.

This chapter describes how to integrate Polyspace verification into your software development cycle.
It explains both how to use Polyspace verification in your current development process, and how to
change your process to get more out of verification.

Best Practices for Verification Workflow
Polyspace verification can be used throughout the software development cycle. However, to maximize
both quality and productivity, the most efficient time to use it is early in the development cycle.

2 How to Use Polyspace Software

2-2

Polyspace Verification in the Development Cycle

Typically, verification is conducted in two stages. First, you verify code as it is written, to check
coding rules and quickly identify obvious defects. Once the code is stable, you verify it again before
module/unit testing, with more stringent verification and review criteria.

Using verification at this stage of the development cycle improves both quality and productivity,
because it allows you to find and manage defects soon after the code is written. This saves time
because each developer is familiar with their own code, and can quickly determine why the code
contains defects. In addition, defects are cheaper to fix at this stage as they can be addressed before
the code is integrated into a larger system.

 Polyspace Verification and the Software Development Cycle

2-3

Implementing a Process for Polyspace Verification
In this section...
“Overview of the Polyspace Process” on page 2-4
“Defining Quality Goals” on page 2-4
“Defining a Verification Process to Meet Your Goals” on page 2-6
“Applying Your Verification Process to Assess Code Quality” on page 2-6
“Improving Your Verification Process” on page 2-7

Overview of the Polyspace Process
Polyspace verification cannot automatically produce quality code at the end of the development
process. However, if you integrate Polyspace verification into your development process, Polyspace
verification helps you to measure the quality of your code, identify issues, and ultimately achieve your
own quality goals.

To implement Polyspace verification within your development process, you must perform each of the
following steps:

1 Define your quality goals.
2 Define a process to match your quality goals.
3 Apply the process to assess the quality of your code.
4 Improve the process.

Defining Quality Goals
Before you can verify whether your code meets your quality goals, you must define those goals. This
process involves:

• “Choosing Robustness or Contextual Verification” on page 2-4
• “Defining Software Quality Levels” on page 2-5

Choosing Robustness or Contextual Verification

Before using Polyspace products to verify your code, you must decide what type of software
verification you want to perform. There are two approaches to code verification that result in slightly
different workflows:

• Robustness Verification – Prove software does not generate run-time errors for all verification
conditions.

• Contextual Verification – Prove software does not generate run-time errors under normal
working conditions.

Note Some verification processes may incorporate both robustness and contextual verification. For
example, developers may perform robustness verification on individual files early in the development
cycle, while writing the code. Later, the team may perform contextual verification on larger software
components.

2 How to Use Polyspace Software

2-4

Robustness Verification

Robustness verification proves that the software does not generate run-time errors under all
verification conditions, including “abnormal” conditions for which it was not designed. This can be
thought of as “worst case” verification.

By default, Polyspace software assumes you want to perform robustness verification. In a robustness
verification, Polyspace software:

• Assumes function inputs are full range
• Initializes global variables to full range
• Automatically stubs missing functions

While this approach ensures that the software works under all verified conditions, it can lead to
orange checks (unproven code) in your results. You must then manually inspect these orange checks
in accordance with your software quality goals.

Contextual Verification

Contextual verification proves that the software works under predefined working conditions. This
limits the scope of the verification to specific variable ranges, and verifies the code within these
ranges.

When performing contextual verification, you use Polyspace options to reduce the number of orange
checks. For example, you can:

• Use Data Range Specifications (DRS) to specify the ranges for your variables, thereby limiting the
verification to these cases. For more information, see “Inputs & Stubbing”.

• Create a detailed main program to model the call sequence, instead of using the default main
generator. For more information, see “Manually Generating a Main” on page 4-7.

• Provide manual stubs that emulate the behavior of missing functions, instead of using the default
automatic stubs. For more information, see “Manual vs. Automatic Stubbing” on page 5-3.

Defining Software Quality Levels

The software quality level you define determines which Polyspace options you use, and which results
you must review.

You define the quality levels for your application, from level SQL-1 (lowest) to level SQL-4 (highest).
Each quality level consists of a set of software quality criteria that represent a certain quality
threshold. For example:

 Implementing a Process for Polyspace Verification

2-5

Software Quality Levels

Criteria Software Quality Levels
SQL1 SQL2 SQL3 SQL4

Document static information X X X X
Review all red checks X X X X
Review all gray checks X X X X
Review first criteria level for orange checks X X X
Review second criteria level for orange checks X X
Perform dataflow analysis X X
Review third criteria level for orange checks X

In the example above, the quality criteria include:

• Static Information – Includes information about the application architecture, the structure of
each module and file. Full verification of your application requires the documentation of static
information.

• Red checks – Represent errors that occur every time the code is executed.
• Gray checks – Represent unreachable code.
• Orange checks – Indicate unproven code, meaning a run-time error may occur. .
• Dataflow analysis – Identifies errors such as non-initialized variables and variables that are

written but not subsequently read. This can include inspection of:

• Application call tree
• Read/write accesses to global variables
• Shared variables and their associated concurrent access protection

Defining a Verification Process to Meet Your Goals
Once you have defined your quality goals, you must define a process that allows you to meet those
goals. Defining the process involves actions both within and outside Polyspace software.

These actions include:

• Setting standards for code development, such as coding rules.
• Setting Polyspace Analysis options to match your quality goals. See “Specify Analysis Options” on

page 3-3.
• Setting review criteria in the Polyspace user interface so that results are reviewed consistently.

See “Review Results”.

Applying Your Verification Process to Assess Code Quality
Once you have defined a process that meets your quality goals, it is up to your development team to
apply it consistently to all software components.

This process includes:

2 How to Use Polyspace Software

2-6

1 Running a Polyspace verification for each software component as it is written.
2 Reviewing verification results consistently. See “Results Management”.
3 Saving review comments for each component, so they are available for future review. See “Add

Review Comments to Results” on page 8-27.
4 Performing additional verifications on each component, as defined by your quality goals.

Improving Your Verification Process
Once you review initial verification results, you can assess both the overall quality of your code, and
how well the process meets your requirements for software quality, development time, and cost
restrictions.

Based on these factors, you may want to take actions to modify your process. These actions may
include:

• Reassessing your quality goals.
• Changing your development process to produce code that is easier to verify.
• Changing Polyspace analysis options to improve the precision of the verification.
• Changing Polyspace options to change how verification results are reported.

For more information, see “Reduce Orange Checks” on page 9-10.

 Implementing a Process for Polyspace Verification

2-7

Sample Workflows for Polyspace Verification

In this section...
“Overview of Verification Workflows” on page 2-8
“Software Developers – Standard Development Process” on page 2-8
“Software Developers – Rigorous Development Process” on page 2-10
“Quality Engineers – Code Acceptance Criteria” on page 2-12
“Project Managers — Integrating Polyspace Verification with Configuration Management Tools” on
page 2-13

Overview of Verification Workflows
Polyspace verification supports two goals at the same time:

• Reducing the cost of testing and validation
• Improving software quality

You can use Polyspace verification in different ways depending on your development context and
quality model. The primary difference being how you exploit verification results.

This section provides sample workflows that show how to use Polyspace verification in a variety of
development contexts.

Software Developers – Standard Development Process
User Description

This workflow applies to software developers using a standard development process. Before
implementing Polyspace verification, these users fit the following criteria:

• In Ada, unit test tools or coverage tools are not used – functional tests are performed just after
coding.

• In C, either coding rules are not used, or rules are not followed consistently.

Quality

The main goal of Polyspace verification is to improve productivity while maintaining or improving
software quality. Verification helps developers find and fix bugs more quickly than other processes. It
also improves software quality by identifying bugs that otherwise might remain in the software.

In this process, the goal is not to completely prove the absence of errors. The goal is to deliver code
of equal or better quality than other processes, while optimizing productivity to provide a predictable
time frame with minimal delays and costs.

Verification Workflow

This process involves file-by-file verification immediately after coding, and again just before
functional testing.

2 How to Use Polyspace Software

2-8

The verification workflow consists of the following steps:

1 The project leader configures a Polyspace project to perform robustness verification, using
default Polyspace options.

Note This means that verification uses the automatically generated “main” function. This main
will call unused procedures and functions with full range parameters.

2 Each developer performs file-by-file verification as they write code, and reviews verification
results.

3 The developer fixes red errors and examines gray code identified by the verification.
4 Until coding is complete, the developer repeats steps 2 and 3 as required.
5 Once a developer considers a file complete, they perform a final verification.
6 The developer fixes red errors, examines gray code, and performs a selective orange review.

Note The goal of the selective orange review is to find as many bugs as possible within a limited
period of time.

Using this approach, it is possible that some bugs may remain in unchecked oranges. However, the
verification process represents a significant improvement from the previous process.

Costs and Benefits

When using verification to detect bugs:

• Red and gray checks — The number of bugs found in red and gray checks varies, but
approximately 40% of verifications reveal one or more red errors or bugs in gray code.

 Sample Workflows for Polyspace Verification

2-9

• Orange checks — The time required to find one bug varies from 5 minutes to 1 hour, and is
typically around 30 minutes. This represents an average of two minutes per orange check review,
and a total of 20 orange checks per package in Ada and 60 orange checks per file in C.

Disadvantages to this approach:

• Setup time — the time required to set up your verification will be higher if you do not use coding
rules. You may have to make modifications to the code before starting the verification.

Software Developers – Rigorous Development Process
User Description

This workflow applies to software developers and test engineers working within development groups.
These users are often developing software for embedded systems, and typically use coding rules.

These users typically want to find bugs early in the development cycle using a tool that is fast and
iterative.

Quality

The goal of Polyspace verification is to improve software quality with equal or increased productivity.

Verification can prove the absence of run-time errors, while helping developers find and fix bugs more
quickly than other processes.

Verification Workflow

This process involves both code analysis and code verification during the coding phase, and thorough
review of verification results before module testing. It may also involve integration analysis before
integration testing.

Workflow for Code Verification

2 How to Use Polyspace Software

2-10

Note Solid arrows in the figure indicate the progression of software development activities.

The verification workflow consists of the following steps:

1 The project leader configures a Polyspace project to perform contextual verification. This
involves:

• Creates a “main” program to model call sequence, instead of using the automatically
generated main.

• Sets options to check the properties of some output variables. For example, if a variable y is
returned by a function in the file and should always be returned with a value in the range 1 to
100, then Polyspace can flag instances where that range of values might be breached.

2 The project leader configures the project to check the required coding rules.
3 Each developer performs file-by-file verification as they write code, and reviews both coding rule

violations and verification results.
4 The developer fixes coding rule violations, fixes red errors, examines gray code, and performs a

selective orange review.
5 Until coding is complete, the developer repeats steps 2 and 3 as required.
6 Once a developer considers a file complete, they perform a final verification.
7 The developer performs an exhaustive orange review on the remaining orange checks.

Note The goal of the exhaustive orange review is to examine all orange checks that were not
reviewed as part of previous reviews. This is possible when using coding rules because the total
number of orange checks is reduced, and the remaining orange checks are likely to reveal
problems with the code.

Optionally, an additional verification can be performed during the integration phase. The purpose of
this additional verification is to track integration bugs, and review:

• Red and gray integration checks;
• The remaining orange checks with a selective review: Integration bug tracking.

Costs and Benefits

With this approach, Polyspace verification typically provides the following benefits:

• 3–5 orange and 3 gray checks per file, yielding an average of 1 bug. Often, 2 of the orange checks
represent the same bug, and another represent an anomaly.

• Typically, each file requires two verifications before it can be checked-in to the configuration
management system.

• The average verification time is about 15 minutes.

Note If the development process includes data rules that determine the data flow design, the
benefits might be greater. Using data rules reduces the potential of verification finding integration
bugs.

If performing the optional verification to find integration bugs, you may see the following results. On
a typical 50,000 line project:

 Sample Workflows for Polyspace Verification

2-11

• A selective orange review may reveal one integration bug per hour of code review.
• Selective orange review takes about 6 hours to complete. This is long enough to review orange

checks throughout the whole application and represents a step towards an exhaustive orange
check review. Spending more time is unlikely to be efficient.

• An exhaustive orange review takes between 4 and 6 days, assuming that 50,000 lines of code
contains approximately 400–800 orange checks.

Quality Engineers – Code Acceptance Criteria
User Description

This workflow applies to quality engineers who work outside of software development groups, and
are responsible for independent verification of software quality and adherence to standards.

These users generally receive code late in the development cycle, and may even be verifying code
that is written by outside suppliers or other external companies. They are concerned with not just
detecting bugs, but measuring quality over time, and developing processes to measure, control, and
improve product quality going forward.

Quality

The main goal of Polyspace verification is to control and evaluate the safety of an application.

The criteria used to evaluate code can vary widely depending on the criticality of the application,
from absence of red errors only to exhaustive oranges review. Typically, these criteria become
increasingly stringent as a project advances from early, to intermediate, and eventually to final
delivery.

For more information on defining these criteria, see “Defining Software Quality Levels” on page 2-5.

Verification Workflow

This process usually involves both code analysis and code verification before validation phase, and
thorough review of verification results based on defined quality goals.

2 How to Use Polyspace Software

2-12

Note Verification is often performed multiple times, as multiple versions of the software are
delivered.

The verification workflow consists of the following steps:

1 Quality engineering group defines clear quality goals for the code to be written, including
specific quality levels for each version of the code to be delivered (first, intermediate, or final
delivery) For more information, see “Defining Quality Goals” on page 2-4.

2 Development group writes code according to established standards.
3 Development group delivers software to the quality engineering group.
4 The project leader configures the Polyspace project to meet the defined quality goals, as

described in “Defining a Verification Process to Meet Your Goals” on page 2-6.
5 Quality engineers perform verification on the code.
6 Quality engineers review red errors, gray code, and the number of orange checks defined in the

process.

Note The number of orange checks reviewed often depends on the version of software being
tested (first, intermediate, or final delivery). This can be defined by quality level (see “Defining
Software Quality Levels” on page 2-5).

7 Quality engineers create reports documenting the results of the verification, and communicate
those results to the supplier.

8 Quality engineers repeat steps 5–7 for each version of the code delivered.

Costs and Benefits

The benefits of code verification at this stage are the same as with other verification processes, but
the cost of fixing faults is higher, because verification takes place late in the development cycle.

It is possible to perform an exhaustive orange review at this stage, but the cost of doing so can be
high. If you want to review all orange checks at this phase, it is important to use development and
verification processes that minimize the number of orange checks. This includes:

• Developing code using strict coding and data rules.
• Providing accurate manual stubs for unresolved function calls.
• Using DRS to provide accurate data ranges for input variables.

Taking these steps will minimize the number of orange checks reported by the verification, and make
it likely that remaining orange checks represent true issues with the software.

Project Managers — Integrating Polyspace Verification with
Configuration Management Tools
User Description

This workflow applies to project managers responsible for establishing check-in criteria for code at
different development stages.

 Sample Workflows for Polyspace Verification

2-13

Quality

The goal of Polyspace verification is to test that code meets established quality criteria before being
checked in at each development stage.

Verification Workflow

The verification workflow consists of the following steps:

1 Project manager defines quality goals, including individual quality levels for each stage of the
development cycle.

2 Project leader configures a Polyspace project to meet quality goals.
3 Developers run verification at the following stages:

• Daily check-in — On the files currently under development. Compilation must complete
without the permissive option.

• Pre-unit test check-in — On the files currently under development.
• Pre-integration test check-in — On the whole project, ensuring that compilation can

complete without the permissive option. This stage differs from daily check-in because link
errors are highlighted.

• Pre-build for integration test check-in — On the whole project, with multitasking aspects
accounted for as required.

• Pre-peer review check-in — On the whole project, with multitasking aspects accounted for
as required.

4 Developers review verification results for each check-in activity to confirm that the code meets
the required quality level. For example, the transition criterion could be: “No bug found within
20 minutes of selective orange review”

2 How to Use Polyspace Software

2-14

Setting Up a Verification Project

• “Create Project” on page 3-2
• “Create Project Using Template” on page 3-5
• “Update Project” on page 3-7
• “Modularize Project” on page 3-10
• “Organize Layout of Polyspace User Interface” on page 3-12
• “Customize Results Location and Folder Name” on page 3-14
• “Specify External Text Editor” on page 3-15
• “Change Default Font Size” on page 3-16
• “Choosing Contextual Verification Options” on page 3-17
• “Setting Up Project to Generate Metrics” on page 3-18

3

Create Project
To create a project manually, you must know:

• Location of your source files
• Location of your include files

Tip In the Polyspace user interface, you can quickly change to an arrangement of panes dedicated to
project setup. Select Window > Reset Layout > Project Setup.

Create Project
This example shows how to create a new project.

1 Select File > New Project.
2 In the Project – Properties window, specify properties for your project:

• Project name
• Location: Folder where you will store the project file (.psprj file) and the results unless you

specify otherwise. You can use the .psprj file to reopen the project.

The software assigns a default location to your project called your Polyspace Workspace. You
can change this default in the Polyspace Preferences on the Project and Results Folder tab.

• Clear the Use template check box unless you have a template you want to use.
3 On the next screen, add source folders to your project.

a Use the Browse button to navigate to the folder containing the source files you want to
analyze.

By default, Polyspace looks for .c, .cpp, .cxx, or .cc files. If you use other file extensions,
before closing the dialog box, change the Files of types option.

b If you chose a source folder with subfolders but do not want to analyze files in the
subfolders, clear the check box Add recursively.

c (Linux® only) Often, compilers add symbolic links in your source folders during compilation.
If your folder contains symbolic links to other folders but you do not want to add source files
from the other folders, select Exclude symbolic links.

d Click Add Source Folder. All source files found under this folder are added to your
Polyspace project.

Tip To see the full path of your files, toggle the button.
e If you do not want to analyze all the files under your source folder, right-click the file or

folder and select Exclude Files. The file appears with an symbol in your project
indicating it is not considered for analysis. You can reinclude the files for analysis by right-
clicking and selecting Include Files.

4 On the next screen, add include folders to your project. The analysis looks for include files
relative to the folder paths that you specify. For instance, if your code contains the preprocessor
directive #include<../mylib.h> and you include the folder:

3 Setting Up a Verification Project

3-2

C:\My_Project\MySourceFiles\Includes

the folder C:\My_Project\MySourceFiles must contain a file mylib.h.

a Use the Browse button to navigate to your folder containing the include files needed for
compilation.

By default, Polyspace looks for .h, .hpp, or .hxx files. If you use other file extensions,
before closing the dialog box, change the Files of types option.

b If you chose an include folder that contains subfolder and you want to add those include
folders as well, select the check box Include all subfolders.

c (Linux only) Often, compilers add symbolic links in your folders during compilation. If your
folder contains symbolic links to other folders but you do not want to add includes from the
other folders, select Exclude symbolic links.

d Click Add Include Folders. The include folder is added to your Polyspace project.

Specify Analysis Options
You can either retain the default analysis options used by the software or change them to your
requirements.

Each project consists of one or more modules. Before running verification on a module, you can
change the analysis options. Each module has a Configuration that consists of the default analysis
options. To change the analysis options:

1 On the Project Browser, below the Configuration node of the module, select the configuration.
2 Change the options on the Configuration pane.

For instance:

 Create Project

3-3

• To specify the target processor, select Target & Compiler in the Configuration tree view.
Select your processor from the Target processor type drop-down list.

• To specify verification precision, select Verification Mode > Precision. Select a number
from the Precision level drop-down list.

You can also create another configuration in your module. For more information, see “Create
Configurations in Module” on page 3-10.

For more information on the options, see “Analysis Options”.

Specify Results Folder
This example shows how to specify a results folder. In the Project Browser pane, the folder appears
as a node under the Result node of your project. By default, the software creates a new results folder
for each analysis. Before starting an analysis, you can choose to overwrite an existing results folder.
For example, if you stopped an analysis before completion and want to restart it, you can overwrite a
results folder.

• To create a new folder for every run, on the Project Browser pane, select Create new result
folder.

• By default, the new folder is created in Project_folder / Module_name. Project_folder
is the project location you specified when creating a new project.

• You can also create a parent folder for storing your results. Select Tools > Preferences and
enter the parent folder location on the Project and Results Folder tab. If you enter a parent
folder location, any new result folder will be created under this parent folder.

• To overwrite an existing folder that is open in the Project Browser pane, clear Create new
result folder. Before running verification, select the result that you want to overwrite.

3 Setting Up a Verification Project

3-4

Create Project Using Template
A Project Template is a predefined set of analysis options for a specific compilation environment.
When creating a new project, you can do one of the following:

• Use an existing template to automatically set analysis options for your compiler.

Polyspace provides predefined templates for common compilers such as Aonix, Rational, and
Greenhills. For additional templates, see Polyspace Compiler Templates .

• Set analysis options manually. You can then save your options as a template and reuse them later.

Use Predefined Template
1 Select File > New Project.
2 On the Project – Properties dialog box, after specifying the project name and location, under

Project configuration, select Use template.
3 On the next screen, select the template that corresponds to your compiler. For further details on

a template, select the template and view the Description column on the right.

If your compiler does not appear in the list of predefined templates, select Baseline.
4 On the next screen, add your source files and include folders. For more information, see “Create

Project” on page 3-2.

Create Your Own Template
This example shows how to save a configuration from an existing project and create a new project
using the saved configuration.

• To create a template from a project that is open on the Project Browser pane:

1 Right-click the project configuration that you want to use, and then select Save As Template.
2 Enter a description for the template, then click Proceed. Save your template file.

• When you create a new project, to use a saved template:

1
Select .

2 Navigate to the template that you saved earlier, and then click Open. The new template
appears in the Custom templates folder on the Templates browser. Select the template for
use.

 Create Project Using Template

3-5

https://www.mathworks.com/matlabcentral/fileexchange/35927-polyspace-compiler-templates

3 Setting Up a Verification Project

3-6

Update Project
You can manually add source files and include folders to an existing project, or change the analysis
options.

Tip In the Polyspace user interface, you can quickly change to an arrangement of panes dedicated to
project setup. Select Window > Reset Layout > Project Setup.

Add Source and Include Folders
If you want to change which files or folders are active in your project without removing them from
your project tree:

1 Right-click the file or folder and select Exclude Files.

The file appears with an symbol in your project indicating it is not considered for analysis.
You can reinclude the files for analysis by right-clicking and selecting Include Files.

If you want to add additional source folders or include folders, follow these steps:

1 In the Project Browser, right-click your project or the Source or Include folder in your project.
2 Select Add Source Folder or Add Include Folder.
3 Add source folders to your project:

a Use the Browse button to navigate to the folder containing the source files you want to
analyze.

By default, Polyspace looks for .c, .cpp, .cxx, or .cc files. If you use other file extensions,
before closing the dialog box, change the Files of types option.

b If you chose a source folder that contains subfolder and you do not want to analyze source
files in those subfolders, clear the check box Add recursively.

c (Linux only) Often, compilers add symbolic links in your source folders during compilation. If
your folder contains symbolic links to other folders but you do not want to add source files
from the other folders, select Exclude symbolic links.

d Click Add Source Folder. All source files found under the folder are added to your
Polyspace project.

Tip To see the full path of your files, click the button.
e If you do not want to analyze all the files under your source folder, right-click the file or

folder and select Exclude Files. The file appears with an symbol in your project
indicating it is not considered for analysis. You can reinclude the files for analysis by right-
clicking and selecting Include Files.

Repeat these steps as many times as necessary, then click Next.
4 Add include folders to your project.

 Update Project

3-7

a Use the Browse button to navigate to your folder containing the include files needed for
compilation.

By default, Polyspace looks for .h, .hpp, or .hxx files. If you use other file extensions,
before closing the dialog box, change the Files of types option.

b If you chose an include folder that contains subfolder and you want to add those include
folders as well, select the check box Include all subfolders.

c (Linux only) Often, compilers add symbolic links in your folders during compilation. If your
folder contains symbolic links to other folders but you do not want to add includes from the
other folders, select Exclude symbolic links.

d Click Add Include Folders. The include folder is added to your Polyspace project.

Repeat these steps as many times as necessary, then click Finish. The new project opens in the
Project Browser pane.

5 Click Finish.
6 Before running an analysis, you must copy the source files to a module.

a Select the source files that you want to copy. To select multiple files together, press the Ctrl
key while selecting the files.

b Right-click your selection.
c Select Copy to > Module_n. n is the module number.

Manage Include File Sequence
You can change the order of include folders to manage the sequence in which include files are
compiled.

When multiple include files by the same name exist in different folders, you might want to change the
order of include folders instead of reorganizing the contents of your folders. For a particular include
file name, the software includes the file in the first include folder under Project_Name > Include.

In the following figure, Folder_1 and Folder_2 contain the same include file include.h. If your
source code includes this header file, during compilation, Folder_2/include.h is included in
preference to Folder_1/include.h.

To change the order of include folders:

1 In your project, expand the Include folder.
2 Select the include folder or folders that you want to move.
3

To move the folder, click either or .

Change Analysis Options
For later verifications, you might have to change your analysis options. For instance:

3 Setting Up a Verification Project

3-8

• To avoid compilation errors in Polyspace for constructs that are allowed by your compiler, specify
your target and compiler options.

For more information, see “Target & Compiler”.
• If you provide partially developed code, you can specify external constraints to stand in for the

remaining code. Towards the end of your development cycle, as you provide more complete code
for verification, you can remove some of these constraints.

For more information, see “Inputs & Stubbing”.
• If your code is intended for multitasking, you can specify your entry points and protection

mechanisms.

For more information, see “Verification Mode”.
• To allow Polyspace to prove more operations and therefore produce fewer non-critical orange

checks, you can specify appropriate options.

For more information, see “Reduce Orange Checks” on page 9-10.

For more information, see “Specify Analysis Options” on page 3-3.

 Update Project

3-9

Modularize Project
You can create multiple modules in a Polyspace project. In each module, you can copy all or some of
your source files.

On the Project Browser pane, each module contains the following nodes.

Node Content
Source All or some of the source files in the project.

When you run verification on the module, the
software verifies these source files.

Configuration One or more configurations. Each configuration
consists of a set of analysis options.

Result One or more results.

In your file system, each module corresponds to a subfolder of your project folder.

Note If you add your source files when creating a new project, they are automatically copied to the
first module, Module_1. If you add them later, you must copy them manually to a module.

In this section...
“Create New Module” on page 3-10
“Create Configurations in Module” on page 3-10

Create New Module
Suppose you have one module, Module_1, in your project.

1 Do one of the following on the Project Browser pane:

•
Select your project. Click the button on the Project Browser toolbar.

• Right-click your project or the existing module. Select Create New Module.

You see a new module, Module_2, in your project. To rename the module, right-click the module
name.

2 In your project, below the Source node, right-click the files that you want to add to the module.
From the context menu, select Copy to > Module_2.

The software displays these files below the Source node of Module_2.

Create Configurations in Module
By default, when you create a new module, it contains a configuration with the default analysis
options. To run verification on the module with different options, do one of the following:

• Change the analysis options in this configuration.

3 Setting Up a Verification Project

3-10

• Create a new configuration and change the options in the new configuration. You can retain the
default analysis options in the original configuration.

Tip To copy a configuration to another module, right-click the configuration. Select Copy
Configuration to > Module_name.

To create a new configuration in your module:

1 Right-click the Configuration folder in the module. From the context menu, select Create New
Configuration.

• On the Project Browser pane, the software displays a new configuration project_name_1.
To rename the configuration, right-click the configuration and select Rename Configuration.

• On the Configuration pane, the new configuration appears as an additional tab.
2 On the Configuration pane, specify the analysis options for the new configuration.
3 To use this new configuration, double-click it.

When you run a new verification on the module, it uses the analysis options in this configuration.
4 To see the configuration you used for a certain result, right-click the result on the Project

Browser. Select Open Configuration.

You can see a read-only form of the configuration.

Note If you are viewing the results and do not have the corresponding project open on your
Project Browser, to see the configuration you used, select the link View configuration for
results on the Dashboard pane.

 Modularize Project

3-11

Organize Layout of Polyspace User Interface
The Polyspace user interface has two default layouts of panes.

The default layout for project setup has the following arrangement of panes:

Project Browser Configuration
Output Summary

The default layout for results review has the following arrangement of panes:

Results List Result Details
Dashboard

You can create and save your own layout of panes. If the current layout of the user interface does not
meet your requirements, you can use a saved layout.

You can also change to one of the default layouts of the Polyspace user interface. Select Window >
Reset Layout > Project Setup or Window > Reset Layout > Results Review.

Create Your Own Layout
To create your own layout, you can close some of the panes, open some panes that are not visible by
default, and move existing panes to new locations.

To open a closed pane, select Window > Show/Hide View > pane_name.

To move a pane to another location:

1 Float the pane in one of three ways:

• Click and drag the blue bar on the top of the pane to float all tabs in that pane.

For instance, if Project Browser and Results List are tabbed on the same pane, this action
floats the pane together with its tabs.

• Click and drag the tab at the bottom of the pane to float only that tab.

For instance, if Project Browser and Results List are tabbed on the same pane, dragging
out Project Browser creates a pane with only Project Browser on it and floats this new
pane.

• Click on the top right of the pane to float all tabs in that pane.
2 Drag the pane to another location until it snaps into a new position.

If you want to place the pane in its original location, click in the upper-right corner of the
floating pane.

Save and Reset Layout
After you have created your own layout, you can save it. You can change from another layout to this
saved layout.

3 Setting Up a Verification Project

3-12

• To save your layout, select Window > Save Current Layout As. Enter a name for this layout.
• To use a saved layout, select Window > Reset Layout > layout_name.
• To remove a saved layout from the Reset Layout list, select Window > Remove Custom Layout

> layout_name.

 Organize Layout of Polyspace User Interface

3-13

Customize Results Location and Folder Name
By default, the software saves verification results in Module_(#) subfolders within the project folder.
However, through the Polyspace Preferences dialog box, you can define a parent folder for your
results.

1 Select Tools > Preferences.
2 On the Project and Results Folder tab, select Create new result folder.
3 In the Parent results folder location field, specify the location that you want.
4 If you require a subfolder, select the Add a subfolder using the project name check box. This

subfolder takes the name of the project.
5 If required, specify additional formatting options for the folder name . The options allow you to

incorporate the following information into the name of the results folder:

• Result folder prefix — A string that you define. Default is Result.
• Project variable — Project, module, and configuration.
• Date format — Date of verification
• Time format — Time of verification
• Counter — Count value that automatically increments by one with each verification

For each verification, the software now creates a new results folder
ResultFolderPrefix_ProjectVariable_DateFormat_TimeFormat_Counter.

Note If you do not specify a parent results folder, the software uses the active module folder as the
parent folder.

3 Setting Up a Verification Project

3-14

Specify External Text Editor
This example shows how to change the default text editor for opening source files from the Polyspace
interface. By default, if you open your source file from the user interface, it opens on a Code Editor
tab. If you prefer editing your source files in an external editor, you can change this default behavior.

1 Select Tools > Preferences.
2 On the Polyspace Preferences dialog box, select the Editors tab.
3 From the Text editor drop-down list, select External.
4 In the Text editor field, specify the path to your text editor. For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe
5 To make sure that your source code opens at the correct line and column in your text editor,

specify command-line arguments for the editor using Polyspace macros, $FILE, $LINE and
$COLUMN. Once you specify the arguments, when you right-click a check on the Results List
pane and select Open Editor, your source code opens at the location of the check.

Polyspace has already specified the command-line arguments for the following editors:

• Emacs
• Notepad++ — Windows® only
• UltraEdit
• VisualStudio
• WordPad — Windows only
• gVim

If you are using one of these editors, select it from the Arguments drop-down list.

If you are using another text editor, select Custom from the drop-down list, and enter the
command-line options in the field provided.

For console-based text editors, you must create a terminal. For example, to specify vi:

a In the Text Editor field, enter /usr/bin/xterm.
b From the Arguments drop-down list, select Custom.
c In the field to the right, enter -e /usr/bin/vi $FILE.

6 To revert back to the built-in editor, on the Editors tab, from the Text editor drop-down list,
select Built In.

 Specify External Text Editor

3-15

Change Default Font Size
This example shows how to change the default font size in the Polyspace user interface.

1 Select Tools > Preferences.
2 On the Miscellaneous tab:

• To increase the font size of labels on the user interface, select a value for GUI font size.

For example, to increase the default size by 1 point, select +1.
• To increase the font size of the code on the Source pane and the Code Editor pane, select a

value for Source code font size.
3 Click OK.

When you restart Polyspace, you see the increased font size.

3 Setting Up a Verification Project

3-16

Choosing Contextual Verification Options
While creating your project, you must configure analysis options to match your quality goals.
Polyspace software performs robustness verification by default. If you want to perform contextual
verification, there are several options you can use to provide context for data ranges, function call
sequence, and stubbing.

For more information on robustness and contextual verification, see “Defining Quality Goals” on page
2-4.

Note If you are aware of run-time errors in your code but still want to run a verification, you can
annotate your code so that these known errors are highlighted in the Polyspace user interface. For
more information, see “Add Review Comments to Code” on page 8-49.

1 On the Configuration pane, select Verification Mode. Select Verify module.
2 On the Configuration pane, select Inputs & Stubbing. In the Variable/function range setup

field, specify a data range specification (DRS) file.
3 Specify how uninitialized global variables are initialized with Initialization of

uninitialized global variables.

For more information on these options, see “Analysis Options”.

 Choosing Contextual Verification Options

3-17

Setting Up Project to Generate Metrics
In this section...
“About Polyspace Metrics” on page 3-18
“Enabling Polyspace Metrics” on page 3-18
“Specifying Automatic Verification” on page 3-18

About Polyspace Metrics
Polyspace Metrics is a Web-based tool for software development managers, quality assurance
engineers, and software developers. In software projects, this tool enables you to do the following :

• Evaluate software quality metrics
• Monitor the variation of code metrics and run-time checks over the lifecycle of a project
• View defect numbers, run-time reliability of the software, review progress, and the status of the

code with respect to software quality objectives

For information on using Polyspace Metrics, see “Reports and Metrics”.

Enabling Polyspace Metrics
1 On the Configuration pane, select Machine Configuration.
2 Select the Send to Polyspace Server check box.
3 Select the Add to results repository check box.

The software generates Polyspace Metrics for the next verification.

Specifying Automatic Verification
You can configure verifications to start automatically and periodically, for example, at a specific time
every night. At the end of each verification, the software stores results in the repository and updates
the project metrics. You can also configure the software to send you an email at the end of the
verification.

For more information, see “Specifying Automatic Verification” on page 10-3.

3 Setting Up a Verification Project

3-18

Emulating Your Run-Time Environment

• “Target & Compiler Overview” on page 4-2
• “Specifying Target & Compiler Parameters” on page 4-3
• “Predefined Target Processor Specifications” on page 4-4
• “Main Generator Overview” on page 4-5
• “Automatically Generating a Main” on page 4-6
• “Manually Generating a Main” on page 4-7
• “How Polyspace Verifies Generic Packages” on page 4-8
• “Specifying Constraints Using Text Files” on page 4-9
• “Effect of External Constraints on Polyspace Analysis” on page 4-12
• “Performing Efficient Module Testing with Constraints” on page 4-15
• “Reducing Orange Checks with External Constraints” on page 4-16
• “Using Pragma Assert to Set Data Ranges” on page 4-17
• “Supported Ada Pragmas” on page 4-18
• “How Polyspace Evaluates Function and Procedure Parameters” on page 4-19

4

Target & Compiler Overview
Many applications run on specific target CPUs and operating systems. The type of CPU determines
many data characteristics, such as data sizes and addressing. These factors can influence whether
errors (such as overflows) occur.

Some run-time errors are dependent on the target CPU and operating system. Therefore, before
running a verification, you must specify the type of CPU and operating system for the target
environment.

See Also

Related Examples
• “Specifying Target & Compiler Parameters” on page 4-3

4 Emulating Your Run-Time Environment

4-2

Specifying Target & Compiler Parameters
To specify the target environment and compiler behavior for your application, in the Polyspace user
interface, on the Configuration pane, select Target & Compiler.

For example, to specify the target environment for your application:

1 For Target operating system, select the operating system on which your application is
designed to run.

2 For Target processor type, select the processor on which your application is designed to run.

For detailed specifications of each predefined target processor, see “Predefined Target Processor
Specifications” on page 4-4.

See Also

More About
• “Target & Compiler Overview” on page 4-2

 Specifying Target & Compiler Parameters

4-3

Predefined Target Processor Specifications
Polyspace software supports many processors. To specify a predefined processor:

1 On the Configuration pane, select Target & Compiler.
2 For Target processor type, select your processor.
3 If your processor is not specified in the drop-down list, use the following table to select a

processor that shares the same characteristics as your processor.

Target sparc m68kCold
Fire

1750a powerpc32
bit

powerpc64
bit

i386

Character 8 8 16 8 8 8
short_integer 16 16 16 16 16 16
Integer 32 32 16 32 32 32
long_integer 32 32 32 32 64 32
long_long_integer 64 64 64 64 64 64
short_float 32 32 32 32 32 32
Float 32 32 32 32 32 32
long_float 64 64 48 64 64 64
long_long_float 64 64 48 64 64 64

In the following list, the largest default alignment of basic types within record/array for various
targets is given:

• powerpc32bits — 64.
• powerpc64bits — 64.
• i386 — 32.

4 To identify target processor characteristics, compile and run the following program. If none of
the characteristics described in the preceding table match, contact MathWorks® technical
support for advice.
with TEXT_IO;
procedure TEMP is
type T_
Ptr is access integer;
Ptr :T_Ptr;
begin
TEXT_IO.PUT_LINE (Integer'Image (Character'Size));
TEXT_IO.PUT_LINE (Integer'Image (Short_Integer'Size));
TEXT_IO.PUT_LINE (Integer'Image (Integer'Size));
TEXT_IO.PUT_LINE (Integer'Image (Long_Integer'Size));
-- TEXT _IO.PUT_LINE (Integer'Image(Long_Long_Integer'Size));
TEXT_IO.PUT_LINE (Integer'Image (Float'Size));
-- TEXT _IO.PUT_LINE (Integer'Image(D_Float'Size));
TEXT_IO.PUT_LINE (Integer'Image (Long_Float'Size));
TEXT_IO.PUT_LINE (Integer'Image (Long_Long_Float'Size));
TEXT_IO.PUT_LINE(Integer'Image (T_Ptr'Size));
end TEMP;

4 Emulating Your Run-Time Environment

4-4

Main Generator Overview
When your application is a function library (API) or a single module, you must provide a main that
calls each uncalled procedure within the code because of the execution model used by Polyspace. You
can either manually provide a main, or use Polyspace to generate a main automatically.

When you run a verification on Polyspace Client™ for Ada software, the main is generated. When you
run a verification on Polyspace Server™ for Ada software, you can choose to generate a main
automatically.

 Main Generator Overview

4-5

Automatically Generating a Main
You can choose to automatically generate a main by selecting the Verify module (-main-
generator) option. The -main-generator option automatically creates a procedure that calls
every uncalled procedure within the code.

With Polyspace Client for Ada software, the software, by default, automatically generates a main. You
can choose to manually generate a main using the -main option:

1 On the Configuration pane, select Verification Mode.
2 Select Verify whole application.
3 In the Main entry point field, the package that defines the main, for example, INIT.MAIN.

With Polyspace Server for Ada, the software sets the -main option by default. You can choose to
automatically generate a main using the -main-generator option.

1 On the Configuration pane, select Verification Mode.
2 Select Verify module.

For more information on the main generator, see Verify module.

4 Emulating Your Run-Time Environment

4-6

Manually Generating a Main
You might prefer to manually generate a main because it allows you to provide a more accurate
model of the calling sequence to be generated.

To manually define the main:

1 Identify the API functions and extract their declaration.
2 Create a main containing declarations of a volatile variable for each type that is listed in the

function prototypes.
3 Create a loop with a volatile end condition.
4 Inside this loop, create a switch block with a volatile condition.
5 For each API function, create a case branch that calls the function using the volatile variable

parameters that you created.

The following code shows the five steps:
-- Step 1: API function declarations
function func1(x in integer) return integer;
procedure func2(x in out float, y in integer);

-- Step 2: Create main with declarations of volatile variables
procedure main is
 a,b,c,d: integer;
 e,f: float;
pragma volatile (a);
pragma volatile (e);
begin

 --Step 3: Create loop
 loop
 f:=e;
 c:=a;
 d:=a;
 -- Steps 4 and 5
 if (a = 1) then b:= func1(c); end if;
 if (a = 1) then func2(e,d); end if;
 end loop
end main;

 Manually Generating a Main

4-7

How Polyspace Verifies Generic Packages
Consider the following code, which instantiates a generic package.
with Ada.Numerics.Generic_Elementary_Functions;

Package Body Test is
 Pi : Constant := 3.141592;
 Buf_Length : constant := 500;
 type Buffer_type is array(1 .. Buf_Length) of Float;
 Tab : Buffer_type;

 -- Create instance of generic package
 package Trig is new Ada.Numerics.Generic_Elementary_Functions(float);

Procedure Main is
begin
 for i in Tab'First .. Tab'Last loop
 Tab(i) := float(1.0 - Trig.cos(2.0 * Pi * float(i - 1) / 1000.0));
 end loop;
end Main;

end Test;

Polyspace can only analyze packages that are explicitly instantiated. In the code, Trig represents a
new instantiation of the generic package
Ada.Numerics.Generic_Elementary_Functions(float). If you specify the Verify module (-
main-generator) option, Polyspace verifies the functions called by your code. In this case,
Polyspace verifies only the function cos from the new package.

4 Emulating Your Run-Time Environment

4-8

Specifying Constraints Using Text Files
By default, Polyspace software performs robustness verification, proving that the software does not
generate run-time errors for all verification conditions. Robustness verification assumes that the data
inputs are set to their full range. Therefore, most operations on these inputs could produce an
overflow.

The Polyspace Data Range Specifications (DRS) feature allows you to perform contextual verification,
proving that the software works under normal working conditions. You can set xternal constraints on
data ranges, and verify the code within these ranges. This process can substantially reduce the
number of orange checks in the verification results.

To specify external constraints, you must specify a file that constrains the range of values for global
variables, values returned by stubbed functions, out or in/out parameters of stubbed procedures, or
input parameters of user subprograms called by the main generator during verification. See
“Constraint File Format” on page 4-9.

To configure a verification that applies the data range specifications in this text file:

1 In the Polyspace user interface, on the Configuration pane, select Inputs & Stubbing.
2

To the right of the Constraint setup row, click . The Load a constraint file dialog box
opens.

3 Use this dialog box to navigate to the folder that contains your text file with constraints.
4 In the File name field, specify your constraint file.
5 Click Open. You see the file path in the Constraint setup field.
6 Select File > Save to save your project settings, including the text file location.

Constraint File Format
The constraint file contains a list of variables, functions, and parameter names together with
associated data ranges. During verification, the point at which the range is applied, for example, to a
variable, is controlled by the mode keyword: reinit, init, or permanent.

Each line of the file must have the following format:

var_func_param min_val max_val <reinit|init|permanent>

• var_func_param — A variable name, the name of a function that returns a value, or a
subprogram parameter name.

• min_val, max_val — Constants that specify minimum and maximum range values. Data type of
these values can be character, enumerator, integer, or float. The integer or float values may be
binary, octal, decimal, or hexadecimal.

• reinit — Sets global variables to the specified range at the entry point for each subprogram
called by the main generator, or the entry point for the user-defined main subprogram.

• init — Initializes subprogram input parameters to a specified range when the subprogram is
called by the main generator.

• permanent — Sets the return, out, or in/out parameters to the specified range of a stubbed
subprogram each time the subprogram is called.

 Specifying Constraints Using Text Files

4-9

Tips for Creating Constraint Files
• You can replace min_val and max_val by the words “min” or “max”. In this case, the software

uses the corresponding minimum and maximum value for the declared data subtype (true even for
an enumeration type that has enumerated values min and max). For example, with a SPARC®

processor, the minimum value for the integer data type is -2^31 and the maximum value is
2^31-1.

• You can use tab, comma, space, or semicolon as column separators.
• You can apply data range specification to variables and subprograms declared within a package
specification or body, or subprograms outside a package. For subprograms outside a package, use
the subprogram name as package name.

• You cannot apply data range specification to:

• Local subprograms or task entries
• Constant qualified variables, record discriminants, variables of access type, or variables
defined in a protected type or task type

Example Constraint File
The following lines:
P.x 2#0001#E2 100 reinit # x is (re)initialized between [4;100]
P.y min max reinit # y is initialized with the full range.
P.s1.c 'a' max reinit # s1.x is initialized between ['a';Character'Last]
P.bar -1.0 1.0 permanent # stubbed function bar returns [-1.0;1.0]
P.bar1.outp -1.0 1.0 permanent # stubbed procedure bar1's parameter
 # outp returns [-1.0;1.0]
P.proc.i -1.0 1.0 init # main generator calls the user
 # procedure proc with the parameter
 # i initialized to [-1.0;1.0]
dummy_f.dummy_f -10 10 permanent # stubbed free function dummy_f
 # returns [-10;10].

are data range specifications for a scenario where:

• x and y are two global variables declared in the package P
• s1 is a variable of record type that has a character type component c
• bar is the name of a stubbed function
• bar1 is a stubbed procedure with outp as out parameter
• proc is a procedure defined with a parameter named i
• dummy_f is a function declared without a parent package

Warning Messages Related to Constraints
Polyspace produces a DRS warning message in the verification log file in the following situations.

• When a data range constraint is applied:
Warning: <symbol> has a range specified by DRS
in [<min> .. <max>] (<mode>).

• If the constraint file contains a syntax error, Polyspace produces one of the following types of
messages:

4 Emulating Your Run-Time Environment

4-10

• <DRS_file>, line <line#>: Warning: data range specification with
incorrect min that is greater than max

• <DRS_file>, line <line#>: Warning: data range specification with
incorrect min or max type. <[Integer|Float|Enum]> value is expected

• <DRS_file>, line <line#>: Warning: data range specification with
incorrect mode

• <DRS_file>, line <line#>: Warning: data range specification with
incorrect [max|min] value

• <DRS_file>, line <line#>: Warning: data range specification
with [min|min] out of range of ada type

• If the constraint file contains an unsupported data range specification, Polyspace produces one of
the following types of messages:

• <DRS_file>, line <line#>: Warning: data range specification with
unsupported object type | DRS cannot be applied to constant variable,
record discriminant or variant, access type, protected type, task
entry and local subprogram

• <DRS_file>, line <line#>: Warning: data range specification with
unsupported variable scope | Variable must be defined within a
package specification or body

See Also

More About
• “Effect of External Constraints on Polyspace Analysis” on page 4-12

 Specifying Constraints Using Text Files

4-11

Effect of External Constraints on Polyspace Analysis
Using external constraints, you can narrow down the assumptions that Polyspace makes about global
variables, input arguments and return values of undefined functions. This topic shows how
constraints apply to a Polyspace analysis.

Stubbed Functions
If a function body is not present, Polyspace uses a function stub for the analysis. The analysis
assumes that the function stub can return any value within the range allowed by the data type of the
return value. You can narrow down this assumption with external constraints.

Code Example

Analyze this code by specifying custom_main as the main entry point. See Main entry point.

with System;
use System;

package my_package is

function fun(p: Integer; q : Integer) return Integer;
function stub_fun (p : Integer; q : Integer) return Integer;

end my_package;

package body my_package is

function fun(p: Integer; q : Integer) return Integer is
begin
 return p + q;
end fun;

end my_package;

with my_package;

procedure custom_main is
i : Integer;
j : Integer;
begin
 i := my_package.fun(10,20);
 j := my_package.stub_fun(10, 20);
end;

If you place your cursor on the assignments to i and j, the tooltips show this:

• i has the value 30 from the function fun.
• j can have any value allowed for an integer. The function stub_fun is not defined, forcing

Polyspace to make this assumption.

4 Emulating Your Run-Time Environment

4-12

Constraints

Specify this constraint in a text file:

function stub constraints
my_package.stub_fun -10 10 permanent

Use the option Constraint setup to specify this text file. After analysis, you see from the tooltips
that the variable j is confined to the range [-10,10].

Instead of using constrained Polyspace stubs, you can write your own stubs. If you write your own
stubs, you can implement constraints at a more granular level. For instance, this stub for stub_fun
constrains the return value to the range [-10,10], excluding zero.

function stub_fun(p: Integer; q : Integer) return Integer is
tmp: Integer;
random: Integer;
pragma volatile (random);
begin
 tmp := random;
 pragma assert (((tmp >= 10) and (tmp < 0)) or ((tmp > 0) and (tmp <= 10)));
end fun;

Along with fundamental data types, you can also constrain structured types. For instance, if a stubbed
function stub_fun returns a variable of this type:

type Record_Type is
record
 a : Int_32;
 b : Float_64;
 c : CHAR;
end record;

You can constrain the return value with this set of constraints:

function stub constraints
my_package.stub_fun.a -10 10 permanent
my_package.stub_fun.b -20.0 20.0 permanent
my_package.stub_fun.c 'A' 'B' permanent

Stubbed Procedures
Stubbed procedures involve the same assumptions as stubbed functions. Instead of a function return
value, the analysis makes assumptions about out and in out parameters of the procedure. The
analysis assumes that following the procedure call, these parameters can have any value allowed by
their data types.

Code Example

Analyze this code with Polyspace.

 Effect of External Constraints on Polyspace Analysis

4-13

with System;
use System;

package my_package is
procedure stub_proc (val :in Integer; res : out Integer);
end my_package;

package body my_package is
end my_package;

with my_package;

procedure custom_main is
i : Integer;
j : Integer;
begin
 i := 10;
 my_package.stub_proc(i,j);
end;

If you place your cursor on the argument j in the call to stub_proc, you see that it can have any
value allowed for an integer. The procedure stub_proc is not defined, forcing Polyspace to make this
assumption.

Constraints

Specify this constraint in a text file:

function stub constraints
my_package.stub_proc.res -10 10 permanent

Use the option Constraint setup to specify this text file. After analysis, you see from the tooltips
that the variable j is confined to the range [-10,10].

As with functions, instead of using constrained Polyspace stubs, you can write your own stubs. If you
write your own stubs, you can implement constraints at a more granular level.

See Also

More About
• “Specifying Constraints Using Text Files” on page 4-9

4 Emulating Your Run-Time Environment

4-14

Performing Efficient Module Testing with Constraints
External constraints allows you to perform efficient static testing of modules. To do so, you add
design level information, which is missing in the source code.

A module can be seen as a black box that has the following characteristics:

• Input preconditions of call are designed for subprograms to be tested
• Input global data is consumed when testing subprograms
• Output data is produced by missing (stubbed) subprograms

Using external constraints, you can define:

• The nominal range for input arguments as preconditions of subprogram calls
• The generic range for input global variables at the start point of each subprogram test
• The generic range for return parameters of stubbed functions, and out or in/out parameters of

procedures

These definitions then allow Polyspace software to perform a single static verification task, answering
questions about robustness and reliability.

In this context, you assign keywords according to the type of data (input argument of call, input
global data, stubbed subprogram output).

Type of Data DRS Mode Effect on Results Why? Oranges Selectivity
Input argument
of call

init Reduces the number of
orange checks (compared
to a standard Polyspace
verification)

Input arguments that
were full range are set
to a smaller and
realistic range.

↓ ↑

Input global
data

reinit Reduces the number of
orange checks (compared
to a standard Polyspace
verification)

Input data that was full
range is set to a
smaller and realistic
range.

↑ ↑

Stubbed
subprogram
output

permanent Reduces the number of
orange checks (compared
to a standard Polyspace
verification)

Output data, produced
by a missing
subprogram, that was
full range is set to a
smaller and realistic
range.

↑ ↓

See Also

More About
• “Specifying Constraints Using Text Files” on page 4-9
• “Effect of External Constraints on Polyspace Analysis” on page 4-12

 Performing Efficient Module Testing with Constraints

4-15

Reducing Orange Checks with External Constraints
When performing robustness (worst case) verification, data inputs are set to their full range.
Therefore, every operation on these inputs, even a simple “one_input + 10” can produce an
overflow, as the range of one_input varies between the minimum value and the maximum value of
the type.

If you use external constraints to restrict the range of “one-input” to the real functional constraints
found in a specification, design document, or models, you can reduce the number of orange checks
reported on the variable. For example, if you specify that “one-input” can vary between 0 and 10,
Polyspace software recognizes that:

• one_input + 100 does not overflow
• the results of this operation are between 100 and 110

This process eliminates the local overflow orange and results in more accuracy in the data. This
accuracy is then propagated throughout the rest of the code.

The red circle indicates the orange checks that are removed by using constraints.

Removing orange checks caused by full-range (worst-case) data can significantly reduce the total
number of orange checks, especially in the verification of small files or modules. However, the
orange checks caused by code complexity does not change on applying constraints.

See Also

More About
• “Specifying Constraints Using Text Files” on page 4-9
• “Effect of External Constraints on Polyspace Analysis” on page 4-12

4 Emulating Your Run-Time Environment

4-16

Using Pragma Assert to Set Data Ranges
You can use the construct 'pragma assert' within your code to inform Polyspace of constraints
imposed by the environment in which the software will run. A "pragma assert" function is:

pragma assert(<integer expression>);

If <integer expression> evaluates to zero, then the program is assumed to be terminated,
therefore there is a “real” run-time error. This condition is why Polyspace produces checks for the
assertions. The behavior matches the one exhibited during execution, because execution paths for
unsatisfied conditions are truncated (red and then gray). Thus it can be assumed that a
verification performed downstream of the assert uses value ranges which satisfy the assert
conditions.

You can use the construct 'pragma assert' in a procedure to inform Polyspace of constraints in the
environment in which the software will be embedded. You can use user assertions to describe the
physical properties of the environment, such as:

• The maximum and minimum speed limit (a car does not go faster than 200 miles per hour or
slower than 0 miles per hour),

• The maximum duration of software exploitation (five years for a satellite and one hour for its
launcher)

Example 4.1. Example

procedure main is
 counter: integer;
 -- counter is not initialized
 random: integer;
 pragma volatile (random);
begin
 counter:= random;
 -- counter~ [-2^31, 2^31-1]
 pragma assert (counter < 1000);
 pragma assert (counter > 100);
end;

end main;

Both assertions are orange because the conditions may or may not be fulfilled. From then on, counter
~ [101, 999] because execution paths that do not meet the conditions are halted.

 Using Pragma Assert to Set Data Ranges

4-17

Supported Ada Pragmas
Polyspace software provides verification support for many standard Ada or GNAT compiler pragmas.

Pragma How Polyspace Software Processes Pragma
Import, Import_Function, and
Import_Procedure

Stubs function or procedure

Interface and Interface_Name Stubs function or procedure
Inspection_Point Provides information about possible values for the

variable. May display a range.
Volatile Variable becomes full-range
Volatile_Components If you specify Polyspace for Ada95, you get the

same results as with the pragma Volatile. However,
in this case, the pragma applies to arrays.

Assert Produces a user assertion check, ASRT. See User
Assertion.

Restrictions Ignored for standard Ada or GNAT compiler
restrictions. Other restriction pragmas produce a
warning.

Ada_83 and Ada_95 Polyspace option -lang overwrites this pragma
(option set by default to Ada95 when you use
polyspace-ada).

Pure Applies requirement that package has cross-
dependencies only with other Pure packages. If
requirement is not met, generates compilation errors.

You can remove requirement by inserting pragma
Not_Elaborated within package body. For example:
package System is
pragma Pure;
pragma Not_Elaborated;

...
end System;

Prelaborate, Elaborate
Elaborate_All, and Elaborate_Body

Provides order of elaboration and verification of
packages by Polyspace

Storage_Unit Polyspace option -storage_unit overwrites this
pragma

Note If your code contains an unsupported pragma, Polyspace ignores the pragma and continues the
verification. At the end of the compilation phase, Polyspace displays a message:
The following pragmas have been ignored...

4 Emulating Your Run-Time Environment

4-18

How Polyspace Evaluates Function and Procedure Parameters
Polyspace applies by-copy semantics and a left-to-right evaluation order for parameter passing. You
can use Polyspace to verify your Ada code provided your compiler implements:

• Left-to-right evaluation for subprogram parameters. Consider the following code.

1 with ada.integer_text_io;
2 use ada.integer_text_io;
3 procedure test1 is
4 x,y,z,r : integer;
5
6 function f (x : integer) return integer
7 is
8 begin
9 z := 0;
10 return x + 1;
11 end f;
12 begin
13 x := 10;
14 y := 20;
15 z := 10;
16 R := y / Z + F(x);
17 pragma assert(R = 13); -- green ASRT
18 put(R);
19 end;

In this example, Polyspace verification implements left-to-right evaluation and generates a green
ASRT check.

• By-copy semantics for subprogram parameters. Consider the following code.

1 procedure Test2
2 is
3
4 type Rec is
5 record
6 F,G: Integer;
7 end record;
8
9 R: Rec;
10 Result : Integer;
11
12 procedure Multiply (X, Y : in Rec; Z : out Rec)
13
14 is
15 begin
16 z := (0,0);
17 Z.F := X.F * Y.F;
18 Z.G := X.G * Y.G;
19 end Multiply;
20
21 begin
22 R := (10,10);
23 Result := 100;
24 Multiply (R,R,R);
25 Result := Result/R.F;
26 pragma assert (Result = 1); -- green ASRT
27 end Test2;

In this example, Polyspace verification implements by-copy semantics and generates a green ASRT
check.

The green checks generated indicate that the code conforms to the Ada standard, which states that
The execution of a program is erroneous if its effect depends on which mechanism is selected by the
implementation. See Formal Parameter Modes.

 How Polyspace Evaluates Function and Procedure Parameters

4-19

https://www.adahome.com/LRM/83/RM/rm83html/lrm-06-02.html#6.2

Preparing Source Code for Verification

• “Stubbing Overview” on page 5-2
• “Manual vs. Automatic Stubbing” on page 5-3
• “Automatic Stubbing” on page 5-6
• “Polyspace Software Assumptions” on page 5-7
• “Scheduling Model” on page 5-8
• “Modelling Synchronous Tasks” on page 5-9
• “Interruptions and Asynchronous Events/Tasks” on page 5-11
• “Are Interruptions Maskable or Preemptive by Default?” on page 5-13
• “Mailboxes” on page 5-15
• “Atomicity” on page 5-18
• “Priorities” on page 5-19

5

Stubbing Overview
A function stub is a small piece of code that emulates the behavior of a missing function. Stubbing is
useful because it allows you to verify code before all functions have been fully developed.

5 Preparing Source Code for Verification

5-2

Manual vs. Automatic Stubbing
The approach you take to stubbing can have a significant influence on the speed and precision of your
verification.

There are two types of stubs in Polyspace verification:

• Automatic stubs – When you attempt to verify code that calls an unknown function, the software
automatically creates a stub function based on the function’s prototype (the function declaration).
Automatic stubs generally do not provide insight into the behavior of the function.

• Manual stubs – You create these stub functions to emulate the behavior of the missing functions,
and manually include them in the verification with the rest of the source code.

Only advanced users should consider manual stubbing. Polyspace can automatically stub every
missing function or procedure, leading to an efficient verification with a low loss in precision.
However, in some cases you may want to manually stub functions instead. For example, when:

• Automatic stubbing does not provide an adequate representation of the code it represents— both
in regards to missing functions and assembly instructions.

• The entire code is to be provided, which may be the case when verifying a large piece of code.
When the verification stops, it means the code is not complete.

• You want to improve the selectivity and speed of the verification.
• You want to gain precision by restricting return values generated by automatic stubs.
• You need to deal with a function that writes to global variables.

Deciding which Stub Functions to Provide
Stubs do not need to model the details of the functions or procedures involved. They only need to
represent how the function interacts with the remainder of the code.

Consider procedure_to_stub. If it represents:

• a timing constraint, such as a timer set/reset, a task activation, a delay or a counter of ticks
between two precise locations in the code, you can stub it to an empty action begin null;
end;. Polyspace does not need a concept of timing because the software takes into account
possible scheduling and interleaving of concurrent execution. You do not have to stub functions
that set or reset a timer. Simply declare the variable representing time as volatile.

• an I/O access, such as to a hardware port, a sensor, read/write of a file, read of an EEPROM, write
to a volatile variable:

• You do not have to stub a write access. If you want to do so, you can stub it through an empty
action begin null; end;.

• You can stub read accesses using procedures that read volatile variables.
• a write to a global variable, consider which procedures or function write to it and why: do not stub

the concerned procedure_to_stub if:

• this variable is volatile;
• this variable is a task list. Such lists are accounted for by default because tasks declared with

the -task option are automatically started.

 Manual vs. Automatic Stubbing

5-3

write a procedure_to_stub by hand if this variable is a regular variable read by other procedures
or functions.

• a read from a global variable: if you want Polyspace to detect that it is a shared variable, you need
to stub a read access as well. This is easy to achieve by copying the value into a local variable.

Generally speaking, follow the data flow and remember that:

• Polyspace only uses the Ada code which is provided.
• For multitasking code, Polyspace does not need to be informed of timing constraints through

explicit time specification inside the code.

Example 5.1. Example

This example shows a header for a missing function (which might occur if, for example, the code is an
incomplete subset or a project). The missing function copies the value of the src parameter to dest, so
there would be a division by zero (RTE) at run time.

procedure a_missing_function
 (dest: in out integer,
 src : in integer);
procedure test is
 a: integer;
 b: integer;
begin
 a: = 1;
 b: = 0;
 a_missing_function(a,b);
 b:= 1 / a;
 -- "/" with the default stubbing
end;

Due to the reliance on the software's default stub, the division is shown with an orange warning
because a is assumed to be anywhere in the full permissible integer range (including 0).

If the function was commented out, then the division would be green.

A red division could only be achieved with a manual stub.

This example shows what might happen if the effects of assembly code are ignored.

procedure test is
begin
 a:= 1;
 b:= 0;
 -- b:= a
 pragma asm ("move: a,b")
 b:= 1 /a;
end;

Due to the reliance on the software's default stub, the assembly code is ignored and the division " /"
is green. The red division "/" could only be achieved with a manual stub.

Summary
Stub manually: to gain precision by restricting return values generated by automatic stubs; to deal
with a function which writes to global variables.

5 Preparing Source Code for Verification

5-4

Stub automatically if you are sure that a run-time error will not be introduced by automatic stubbing;
to minimize preparation time.

 Manual vs. Automatic Stubbing

5-5

Automatic Stubbing
Some functions might not be included in the set of Ada source files because the functions are:

• External.
• Written in another programming language, for example, C.
• Part of the system libraries.

By default, Polyspace automatically stubs these functions.

5 Preparing Source Code for Verification

5-6

Polyspace Software Assumptions
These are the rules followed by Polyspace. It is strongly recommended that the preceding sections
should be read and understood before applying the rules described below. Some rules are mandatory;
others facilitate improved selectivity.

The following describes the default behavior of Polyspace. If the code to be verified does not conform
to these assumptions, then some minor modifications to the code or to the Polyspace run-time
parameters will be required.

• The main procedure must terminate in order for entry-points (or tasks) to start.
• All tasks or entry-points start after the execution of the main has completed. They start

simultaneously, without predefined assumptions regarding the sequence, priority and preemption.

If an entry-point is seen as dead code, it can be assumed that the main contains (a) red error(s) and
therefore does not terminate. Polyspace does not assume any:

• “Atomicity” on page 5-18
• Timing constraints.

 Polyspace Software Assumptions

5-7

Scheduling Model
In the Polyspace model, the main procedure is executed first before other tasks are started. After it
has finished, the task entry points are assumed to start concurrently in an interleaved manner. This is
an accurate upper approximation model for most concurrent RTOS.

Tasks and main loops need to simply declare as entry points. It only concerns task not defined using
keyword of the Ada language.

Example
procedure body back_ground_task is
begin
 loop -- infinite loop
-- background task body
-- operations
-- function call
my_original_package.my_procedure;
 end loop
end back_ground_task

Launching Command
polyspace-ada -entry-points package.other_task,package.back_ground_task

If the tasks are already infinite loops, simply declare them as mentioned above.

Limitation
• A main procedure using the -main option is required.
• The tasks declared in -entry-points may not take parameters and may not have return

values: procedure MyTask is end MyTask;

If it is not the case, it is mandatory to encapsulate with a new procedure. In this case, the real task
will be called inside.

• The main procedure cannot be called in a defined or declared task.

5 Preparing Source Code for Verification

5-8

Modelling Synchronous Tasks
Problem
My application has the following behavior:

• Once every 10 ms: void tsk_10ms(void);
• Once every 30 ms: ...
• Once every 50 ms

My tasks do not interrupt each other. My tasks do not contain infinite loops.

procedure tsk_10ms;
begin do_things_and_exit();
 -- it's important it returns control
end;

Explanation
If each task was declared to Polyspace by using the option

polyspace-ada -entry-points pack_name.tsk_10ms, pack_name.tsk_30ms,
pack_name.tsk_50ms

then the results would be valid. However, because more scenarios than those encountered at
execution time are modelled, there may be unnecessarily more warnings — the results are less
precise.

In order to address this, Polyspace Server for Ada needs to be informed that the tasks are purely
sequential. This can be achieved by writing a function to call each of the tasks in the right sequence,
and then declaring this new function as a single task entry point.

Solution 1
Write a function that calls the cyclic tasks in the right order: this is an exact sequencer. This
sequencer is then identified to the software as a single task.

This sequencer will be a single Polyspace task entry point. This solution:

• is more precise,
• but you need to know the exact sequence of events.

procedure body one_sequential_Ada_function is
begin
 loop
 tsk_10ms;
 tsk_10ms;
 tsk_10ms;
 tsk_30ms;
 tsk_10ms;
 tsk_10ms;
 tsk_50ms;
 end_loop
end one_sequential_Ada_function;

polyspace-ada -entry-points pack_name.one_sequential_Ada_function

 Modelling Synchronous Tasks

5-9

Solution 2
Make an upper approximation sequencer, which takes into account every possible scheduling.
This solution:

• is less precise,
• but is quick to code, especially for complicated scheduling.

procedure body upper_approx_Ada_function is
 random : integer;
 pragma volatile (random);
begin
 loop
 if (random = 1) than tsk_10ms; end if;
 if (random = 1) than tsk_30ms; end if;
 if (random = 1) than tsk_50ms; end if;
 end_loop
end upper_approx_Ada_function;

polyspace-ada -entry-points pack_name.upper_approx_Ada_function

Note If this is the only task, then it can be added at the end of the main.

5 Preparing Source Code for Verification

5-10

Interruptions and Asynchronous Events/Tasks

Problem
Interrupt service routines appear gray (dead code) in the Polyspace user interface.

Explanation
The gray code indicates that this code is not executed and is not taken into account, so the
interruptions are ignored by Polyspace Server for Ada.

The execution model is such that the main is executed initially. Only if the main terminates and
returns control (i.e. if it is not an infinite loop) will the task entry points be started.

My interrupts it1 and it2 cannot preempt each other
You can group interruptions in a single function and declare that function as a task entry point if the
following conditions are fulfilled:

• The functions it1 and it2 cannot interrupt each other.
• Each interrupt can be raised several times in a row.
• The functions do not contain infinite loops.

procedure it_1;
procedure it_2;

task body all_interruptions_and_events is
random: boolean;
pragma volatile (random);
begin
 loop
 if (random) then it_1; end if;
 if (random) then it_2; end if;
 end_loop
end all_interruptions_and_events;

polyspace-ada -entry-points package.all_interruptions_and_events

My interruptions can preempt each other
If two interruption can be interrupted, then:

• encapsulate each of them in a loop;
• declare each loop as a task entry point.

package body original_file is
 procedure it_1 is begin ... end;
 procedure it_2 is begin ... end;
 procedure one_task is begin ... end;
end;

package body new_poly is
procedure polys_it_1 is begin loop it_1; end loop; end;
procedure polys_it_2 is begin loop it_2; end loop; end;

 Interruptions and Asynchronous Events/Tasks

5-11

procedure polys_one_task is begin loop one_task; end loop; end;

polyspace-ada -entry-points new_poly. polys_it_1,new_poly. polys_it_2,
new_poly.polys_one_task

5 Preparing Source Code for Verification

5-12

Are Interruptions Maskable or Preemptive by Default?

Problem
In my main task I use a critical section but I still have unprotected shared data. My application
contains interrupts. Why is my variable verified as unprotected?

Explanation
Polyspace Server for Ada does not distinguish between interrupt service routines and tasks. If you
specify an interrupt to be an -entry-point, it will have the same priority level as other procedures
that are also declared as tasks via the -entry-point option. Therefore, as Polyspace Server for Ada
makes an upper approximation of scheduling and interleaving. This upper approximation
includes the possibility that the ISR can be interrupted by other tasks. There are more paths
modelled than can happen during execution.

Solution
Embed your interrupt in a specific procedure that uses the same critical section as the one you use in
your main task. Then, each time this function is called, the task will enter a critical section which will
be equivalent to a nonmaskable interruption.

Original Packages
package my_real_package is
 procedure my_main_task;
 procedure my_real_it;
 shared_X: INTEGER:= 0;
end my_real_package;

package body my_real_package is
 procedure my_main_task is
 begin
 mask_it;
 shared_x:= 12;
 unmask_it;
 end my_main_task;

 procedure my_real_it is
 begin
 shared_x:= 100;
 end my_real_it;
end my_real_package;

Extra Packages
An extra package that is required to embed the task with body my_real_package;

package extra_additional_pack is
 procedure polyspace_real_it;
end extra_additional_package;

 Are Interruptions Maskable or Preemptive by Default?

5-13

package body extra_additional_pack is
 procedure polyspace_real_it is
 begin
 mask_it;
 my_real_package.my_real_it;
 unmask_it;
 end;
end extra_additional_package;

Command Line to Open Polyspace User Interface
polyspace-ada \
-entry-point my_real_package.my_main_task,extra_additional_pack\
polyspace_real_it
\
-main your_package.your_main

5 Preparing Source Code for Verification

5-14

Mailboxes

Problem
My application has several tasks:

• some that post messages in a mailbox;
• others that read these messages asynchronously.

This communication mechanism is possible because the OS libraries provide send and receive
procedures. I do not have the source files because these procedures are part of the OS libraries.

Explanation
By default, Polyspace Server for Ada will automatically stub these send/receive procedures. Such a
stub will exhibit the following behavior:

• for send(char *buffer, int length): the content of the buffer will only be written when
the procedure is called;

• for receive(char *buffer, int *length): each element of the buffer will contain the full
range of values for the corresponding data type.

Solution
You can provide similar mechanisms with different levels of precision.

Mechanism Description
Let Polyspace Server for Ada stub
automatically

• Quick and easy to code
• Imprecise because between a mailbox sender and

receiver are not directly connected. It means that
even if the sender is only submitting data within a
small range, the full data range for the type(s) will
be used for the receiver data.

Provide a real mailbox mechanism • Can be very costly (time consuming) to implement
• Can introduce errors in the stubs
• Is too much effort compared with the solution below
• Precise, but does not provide a much better

precision than the upper approximation
Provide an upper approximation of the
mailbox

in which each new read to the mailbox reads one of the
recently posted messages, but not necessarily the last
one.

• Quick and easy to code
• Gives precise results
• See detailed implementation below

 Mailboxes

5-15

package mailboxes
 type BIG_ARRAY is
 array (1..100)of INTEGER;
 type MESSAGE is
 record
 length: INTEGER;
 content: BIG_ARRAY;
 end MESSAGE;
 MAILBOX : MESSAGE;
 procedure send
 (X: in MAILBOX);
 procedure receive
 (X: out MAILBOX);
end mailboxes;

package body mailboxes
procedure send (X: in MESSAGE) is
 random : boolean;
 pragma Volatile_(random);
begin
 if (random) then
 MAILBOX:= X;
 end if;
 -- a potential write
 -- to the mailbox
end;

procedure receive
(X: out MESSAGE) is
begin
 X:= MAILBOX;
end;

task body task_1
 msg : MESSAGE;
begin
 for i in 1 .. 100 loop
 msg.content(i):= i;
 end loop;
 msg.length : = 100;
 send(msg);
end task_1;
task body task_2 is
 msg : MESSAGE;
begin
 receive(msg);
 if (msg.length = 100) ...
end;

Provided that each of these tasks is included in a package.

5 Preparing Source Code for Verification

5-16

polyspace-ada -main a_package.a_procedure

 Mailboxes

5-17

Atomicity

Definitions
• Atomic — In computer programming, atomic describes a unitary action or object that is essentially

indivisible, unchangeable, whole, and irreducible
• Atomicity — In a transaction involving two or more discrete pieces of information, either all the

pieces are committed or none are.

Instructional Decomposition
In general terms, Polyspace Server for Ada does not take into account either CPU instruction
decomposition or timing considerations.

It is assumed by Polyspace that instructions are not atomic except in the case of read and write
instructions. Polyspace Server for Ada makes an upper approximation of scheduling and
interleaving. Because of this approximation, the software models more paths than could happen
during execution.

Consider a 16 bit target that can manipulate a 32 bit type (an int, for example). In this case, the CPU
needs at least two cycles to write to an integer.

Suppose that x is an integer in a multitasking system, with an initial value of 0x0000. Now suppose
0xFF55 is written it. If the operation was not atomic it could be interrupted by another instruction in
the middle of the write operation.

• Task 1: Writes 0xFF55 to x.
• Task 2: Interrupts task 1. Depending on the timing, the value of x could be 0xFF00, 0x0055 or

0xFF55.

Polyspace Server for Ada considers write/read instructions atomic, so task 2 can only read 0xFF55,
even if X is not protected.

Critical Sections and Temporal Exclusion
Polyspace Server for Ada does not model the concept of atomicity for critical sections and temporally
exclusive tasks. A critical section implies that once the function associated with -critical-
section-begin has been called, other functions making use of the same label will be blocked.
Functions not using the label can continue to run.

Polyspace Server for Ada verification of run-time errors supposes that a conflict does not occur when
writing the shared variables. Hence even if a shared variable is not protected, the run-time error
verification is complete and correct.

More information about protection is available in Critical section details or Temporally
exclusive tasks.

5 Preparing Source Code for Verification

5-18

Priorities
Polyspace does not consider priorities of tasks during verification. In addition, Polyspace does not
assume that priorities can protect shared variables.

Though you cannot implement different task priorities, the verification effectively takes all priorities
into account because it assumes that:

• All task entry points that you specify on the Configuration pane start at the same time.
• They can interrupt each other in any order, regardless of the sequence of instructions.

For instance, if you have two tasks t1 and t2, and t1 has higher priority than t2, use polyspace-
ada -entry-points t1,t2. Polyspace assumes that:

• t1 can interrupt t2 at arbitrary intervals, thus modelling the behavior at execution time.
• t2 can also interrupt t1 at arbitrary intervals. This behavior does not occur at execution time

unless priority inversion takes place. Polyspace Server for Ada makes an upper approximation of
scheduling and interruptions. Because of this approximation, the software models more paths than
possible during actual execution.

 Priorities

5-19

Running a Verification

• “Run Local Verification” on page 6-2
• “Run Remote Verification” on page 6-4
• “Phases of Verification” on page 6-6
• “Run File-by-File Local Verification” on page 6-7
• “Run File-by-File Remote Verification” on page 6-9
• “Manage Job Monitor” on page 6-11
• “Run Local Verification at Command Line” on page 6-14
• “Run Remote Verification at Command Line” on page 6-15
• “Create Command-Line Script from Project File” on page 6-17

6

Run Local Verification
Before running verification on your source files, you must add them to a Polyspace project. For more
information, see “Create Project”.

In this section...
“Start Verification” on page 6-2
“Monitor Progress” on page 6-2
“Stop Verification” on page 6-2
“Open Results” on page 6-3

Start Verification
To start a verification on your local desktop:

1 On the Project Browser pane, select the project module that you want to verify.
2

On the toolbar, click the button.

Tip To run verification on all modules in the project, expand the drop-down list beside the

. Select Run All Modules.

Monitor Progress
To monitor the progress of a local verification, use the following panes. If you have closed a pane, to
open it again, select Window > Show/Hide View.

• Output Summary — Displays progress of verification, compile phase messages and errors.
• Run Log — This tab displays messages, errors, and statistics for all phases of the verification.

Tip To search for a term in the Output Summary or Run Log, enter the term on the Search pane.
Select Output Summary or Run Log from the drop-down list beside the search box.

If the Search pane is not open by default, select Windows > Show/Hide View > Search.

At the end of a local verification, the Dashboard tab displays statistics, for example, percentage of
code checked for run-time errors and check distribution.

Stop Verification
To stop a local verification:

1 On the toolbar, click the Stop button.

A warning dialog box opens asking whether you want to stop the execution.

6 Running a Verification

6-2

2 Click Yes. The verification stops, and results are incomplete. If you start another verification, the
verification starts from the beginning.

Open Results
After verification, the results open automatically on the Results List pane. If you are looking at
previous results when a verification is over, you can load the new results or retain the previous
results on the Results List pane.

To open the new results later:

1 On the Project Browser pane, navigate to the results set that you want to review.
2 Double-click the results set, for example, Result_1.

The software loads the verification results in the Results List pane.

To open results of verification when the corresponding project is not open in the Project Browser
pane:

1 Select File > Open.
2 In the Open File dialog box, navigate to the results folder. For example:

My_project\Module_1\Result_1
3 Select the results file, for example, My_project.rte.
4 Click Open.

 Run Local Verification

6-3

Run Remote Verification
Run remote verification when:

• You want to shut down your local machine but not interrupt the verification.
• You want to free execution time on your local machine.
• You want to transfer verification to a more powerful computer.

Before you run remote verification, you must do the following:

• Set up a server for this purpose. For more information, see “Polyspace Software Administration”.
• Add your source files to a Polyspace project. For more information, see “Create Project”.

In this section...
“Start Verification” on page 6-4
“Monitor Progress” on page 6-4
“Stop Verification” on page 6-5
“Open Results” on page 6-5

Start Verification
To start a remote verification:

1 On the Project Browser pane, select the module you want to verify.
2 On the Configuration pane, select Machine Configuration. Select Send to Polyspace Server.
3 Optionally, select Add to results repository.

After verification, your results are uploaded to the Polyspace Metrics web dashboard.
4

On the toolbar, click the button.

The verification starts. For information on the verification process, see “Phases of Verification” on
page 6-6.

Note If you see the message Verification process failed, click OK and go to
“Troubleshooting in Polyspace Products for Ada”.

Monitor Progress
You can manage your verification through the Polyspace Job Monitor.

1 Select Tools > Open Job Monitor.
2 In the Polyspace Job Monitor, right-click your verification.
3 From the context menu, select your management task:

• View Log File — Open the verification log.
• Download Results — Download verification results from remote computer if the verification

is complete.

6 Running a Verification

6-4

Stop Verification
1 Select Tools > Open Job Monitor.
2 In the Polyspace Job Monitor, right-click your verification. From the context menu, select

Remove From Queue.

Open Results
Your results are downloaded automatically after verification. To open them:

1 On the Project Browser pane, navigate to the results set.
2 Double-click the results set, for example, Result_1.

The software loads the verification results in the Results List pane.

Note If you choose to upload results to Polyspace Metrics, your results are not downloaded
automatically after verification. Use the Polyspace Metrics web dashboard to view the results and
download them to your desktop. For more information, see “Fix Defects” on page 10-23.

 Run Remote Verification

6-5

Phases of Verification
The verification has three main phases:

1 Checking syntax and semantics (the compile phase). Because Polyspace software is independent
of a particular Ada compiler, it ensures that your code is portable, maintainable, and complies
with ANSI® standards.

2 Generating a main if the verification does not find a main and you selected the Verify module
option. For more information, see “Generate a main”.

3 Analyzing the code for run-time errors and generating color-coded diagnostics.

The compile phase of the verification runs on the client. When the compile phase is complete:

• You see the message queued on server at the bottom of the Polyspace user interface. This
message indicates that the part of the verification that takes place on the client is complete. The
rest of the verification runs on the server.

• A message in the Output Summary view gives you the identification number (Analysis ID) for the
verification.

6 Running a Verification

6-6

Run File-by-File Local Verification
This example shows how to run a local verification on each file independently of other files in the
module. You need a Polyspace Server for Ada license to perform a local file-by-file verification on your
desktop.

In this section...
“Run Verification” on page 6-7
“Open Results” on page 6-7

Run Verification
1 Select your project configuration. On the Configuration pane, specify that each file must be

verified independently of other files.

a Select the Verification Mode node.
b Select Verify module and then Verify files independently.
c For Common source files, enter files that you want to include in the verification of each

file. Enter the full path to a file. Enter one file path per row.
2

On the toolbar, click the button.

As you can see on the Output Summary pane, you can see that after the Compile phase, each
file is verified independently. After the verification is complete for a file, you can view the results
while other files are still being verified.

Open Results
After verification, your results appear in the Project Browser. The results are grouped under a root
node below the Result node of your module. The results for each source file has the same name as
the source file.

After a source file is verified, to open the results, double-click the corresponding result file under the
Result node. Alternatively, after all source files are verified, you can see a summary of results for all
files and begin reviewing from files with more severe issues.

1 To open the results, click the root node below the Result node in your project module. For
instance, click Result_1 if your project uses the default result naming scheme.

On the Dashboard pane, you can see a summary of results for all files. The files in the summary
table are sorted by the severity of check colors. For instance, the files are sorted by the number
of red checks. The files with the same number of red checks are sorted by the number of gray
checks and so on.

2 To load the results for an individual file, double-click the file name on the table.

After you load the results for an individual file, the Dashboard pane shows graphs for the
current file. The summary table for all files appears on a separate Unit by unit results
synthesis tab on this pane. You can use this tab to load results for other files.

 Run File-by-File Local Verification

6-7

See Also
Verify files independently

6 Running a Verification

6-8

Run File-by-File Remote Verification
This example shows how to run a remote verification on each file independently of other files in the
module.

Before you run remote verification, you must do the following:

• Set up a server for this purpose. For more information, see “Polyspace Software Administration”.
• Add your source files to a Polyspace project. For more information, see “Create Project”.

In this section...
“Run Verification” on page 6-9
“Open Results” on page 6-9

Run Verification
1 On the Project Browser pane, select the module you want to verify.
2 On the Configuration pane, select Machine Configuration. Select Send to Polyspace Server.
3 Optionally, select Add to results repository.

After verification, your results are uploaded to the Polyspace Metrics web dashboard.
4 On the Configuration pane, specify that each file must be verified independently of other files.

a Select the Verification Mode node.
b Select Verify module and then Verify files independently.
c For Common source files, enter files that you want to include with verification of each file.

Enter the full path to a file. Enter one file path per row.
5

On the toolbar, click the button.

After the Compile phase, you can view the jobs in the Polyspace Job Monitor.
6 Select Tools > Open Job Monitor.

Your files appear as child nodes under the main verification node. After the verification is
complete for a file, you can download and view the results while other files are still being
verified. Right-click the row corresponding to the file and select Download Results.

Open Results
Your results are automatically downloaded after verification.

To open result for each source file, double-click the corresponding result file under the Result node.
The result file has the same name as the source file.

Note If you select the option Add to results repository, your results are not downloaded
automatically after verification. Use the Polyspace Metrics web dashboard to view the results and
download them to your desktop. For more information, see “Generate Code Quality Metrics”.

 Run File-by-File Remote Verification

6-9

See Also
Verify files independently

6 Running a Verification

6-10

Manage Job Monitor
In this section...
“Purge Server Queue” on page 6-11
“Change Job Monitor Password” on page 6-11
“Share Server Verifications Between Users” on page 6-12

Purge Server Queue
You can purge the server queue of all jobs, or completed and aborted jobs using the using the
Polyspace Job Monitor.

Note You must have the Job Monitor password to purge the server queue.

To purge the server queue:

1 Select Tools > Open Job Monitor.

The Polyspace Job Monitor opens.
2 Select Operations > Purge queue. The Purge queue dialog box opens.
3 Select one of the following options:

• Purge completed and aborted analysis — Removes completed and aborted jobs from the
server queue.

• Purge the entire queue — Removes all jobs from the server queue.

Note For unit-by-unit verification jobs, the jobs are not removed until the entire group has
been verified.

4 Enter the Job Monitor Password.
5 Click OK.

The server queue is purged.

Change Job Monitor Password
The Job Monitor has an administrator password to control access to advanced operations such as
purging the server queue. You can set this password through the Job Monitor.

Note The default password is admin.

To set the Job Monitor password:

1 Select Tools > Open Job Monitor.

The Polyspace Job Monitor opens.

 Manage Job Monitor

6-11

2 Select Operations > Change Administrator Password.

The Change Administrator Password dialog box opens.
3 Enter your old and new passwords. Then click OK.

The password is changed.

Note Passwords are limited to 8 characters.

Share Server Verifications Between Users
Security of Jobs in Server Queue

For security reasons, verification jobs in the server queue are owned by the user who sent the
verification from a specific account. Each verification has a unique encryption key, that is stored in a
text file on the client system.

When you manage jobs in the server queue (for example, download, kill, and remove), the Job
Monitor checks the public keys stored in this file to authenticate that the job belongs to you.

If the key does not exist, an error message appears: “key for verification <ID> not found”.

analysis-keys.txt File

The public part of the security key is stored in a file named analysis-keys.txt which is associated
to a user account. This file is located in %APPDATA%\Polyspace:

• UNIX® — "/home/<username>/.Polyspace"
• Windows — "C:\Users\<username>\AppData\Roaming\Polyspace"

The format of this ASCII file is as follows (tab-separated):

<id of launching> <server name of IP address> <public key>

where <public key> is a value in the range [0..F]

The fields in the file are tab-separated.

The file cannot contain blank lines.

Example 6.1. Example:

1 m120 27CB36A9D656F0C3F84F959304ACF81BF229827C58BE1A15C8123786
2 m120 2860F820320CDD8317C51E4455E3D1A48DCE576F5C66BEEF391A9962
8 m120 2D51FF34D7B319121D221272585C7E79501FBCC8973CF287F6C12FCA

Sharing Verifications Between Accounts

To share a server verification with another user, you must provide the public key.

To share a verification with another user:

1 Find the line in your analysis-keys.txt file containing the <ID> for the job you want to
share.

6 Running a Verification

6-12

2 Add this line to the analysis-keys.txt file of the person who wants to share the file.

The second user can then download or manage the verification.

Magic Key to Share Verifications

A magic key allows you to share verifications without copying individual keys. This allows you to use
the same key for verifications launched from a single user account.

The format for a magic key is as follows:

0 <Server id> <your hexadecimal value>

When you add this key to your analysis-keys.txt file, verification jobs you submit to the server
queue use this key instead of a random one. Users who have this key in their analysis-keys.txt
file can then download or manage your verification jobs.

Note This only works for verification jobs launched after you place the magic key in the file. If the
verification was launched before the key was added, the normal key associated to the ID is used.

If analysis-keys.txt File is Lost or Corrupted

If your analysis-keys.txt file is corrupted or lost (removed by mistake) you cannot download
your verification results. To access your verification results you must use administrator mode.

Note You must have the Job Monitor password to use Administrator Mode.

To use administrator mode:

1 Select Tools > Open Job Monitor.

The Polyspace Job Monitor opens.
2 Select Operations > Enter Administrator Mode.
3 Enter the Job Monitor Password.
4 Click OK.

You can now manage verification jobs in the server queue, including downloading results.

 Manage Job Monitor

6-13

Run Local Verification at Command Line
At the Windows or Linux or command-line, append sources and analysis options to the polyspace-
ada command.

For instance:

• To specify the target processor, use the -target option. For instance, to specify the m68k
processor for your source file file.adb, use the command:

polyspace-ada -sources "file.adb" -lang ada95 -target m68k
• To specify verification precision, use the -O option. For instance, to set precision level to 2 for

your source file file.adb, use the command:

polyspace-ada -sources "file.adb" -lang ada95 -O2

For the full list of analysis options, see “Analysis Options”.

You can also enter the following at the command line:

polyspace-ada -help

6 Running a Verification

6-14

Run Remote Verification at Command Line
In this section...
“Start Verification” on page 6-15
“Manage Verification” on page 6-15
“Download Verification Results from Server” on page 6-16

Start Verification
A set of commands allow you to run remote verifications.

These commands begin with the following prefixes:

• Server verification — Polyspace_Install/polyspace/bin/polyspace-remote-ada
• Client verification — Polyspace_Install/polyspace/bin/polyspace-remote-ada -

desktop

For example,polyspace-remote-ada -desktop -server [<hostname>:[<port>] | auto]
connects the client to the specified server. This connection allows you to run verifications remotely on
the server.

These commands are equivalent to commands with the prefix Polyspace_Install/
polyspace/bin/polyspace.

Manage Verification
A set of commands allow you to manage verification jobs in the server queue. These commands begin
with the prefix Polyspace_Install/polyspace/bin/psqueue-:

• psqueue-download <id> <results dir> — download an identified verification into a results
folder. When downloading a unit-by-unit verification group, the unit results are downloaded and a
summary of the download status for each unit is displayed.

• [-f] force download (without interactivity)
• -admin -p <password> allows administrator to download results.
• [-server <name>[:port]] selects a specific Job Monitor.
• [-v|version] gives release number.

• psqueue-kill <id> — kill an identified verification. For unit-by-unit verification groups, you
can stop the entire group, or individual jobs within the group. Stopping an individual job does not
kill the entire group.

• psqueue-purge all|ended — remove completed verifications from the queue. For unit-by-unit
verification jobs, the jobs are not removed until the entire group has been verified.

• psqueue-dump — gives the list of verifications in the queue associated with the default Job
Monitor. Unit-by-unit verification groups are shown using a tree structure.

• psqueue-move-down <id> — move down an identified verification in the Queue. Individual jobs
can be moved within a unit-by-unit verification group, but not outside of the group.

• psqueue-remove <id> — remove an identified verification in the queue. You cannot remove a
single job that is part of a unit-by-unit verification group, you can only remove the entire group.

 Run Remote Verification at Command Line

6-15

• psqueue-get-qm-server — give the name of the default Job Monitor.
• psqueue-progress <id>: give progression of the currently identified and running verification.

This command does not apply to unit-by-unit verification groups, only the individual jobs within a
group.

• [-open-launcher] display the log in the Polyspace user interface.
• [-full] give full log file.
• psqueue-set-password <password> <new password> — change administrator

password.
• psqueue-check-config — check the configuration of Job Monitor.

• [-check-licenses] check for licenses only.
• psqueue-upgrade — Allow to upgrade a client side. See “Software Installation”.

• [-list-versions] give the list of available release to upgrade.
• [-install-version <version number> [-install-dir <folder>]] [-silent]

allow to install an upgrade in a given folder and in silent.

Note Polyspace_Install/polyspace/bin/psqueue- <command> -h provides information
about available options for each command.

Download Verification Results from Server
You can download verification results at the command line using the psqueue-download command.

To download your results, enter the following command:

<PolyspaceCommonDir>/RemoteLauncher/bin/psqueue-download <id> <results dir>

The verification <id> is downloaded into the results folder <results dir>.

Note If you download results before the verification is complete, you get partial results and the
verification continues.

Once you download results, they remain on the client, and you can review them later in the Polyspace
user interface.

The psqueue-download command has the following options:

• [-f] force download (without interactivity)
• -admin -p <password> allows administrator to download results.
• [-server <name>[:port]] selects a specific Queue Manager.
• [-v|version] gives the release number.

Note When downloading a unit-by-unit verification group, all the unit results are downloaded and a
summary of the download status for each unit is displayed.

6 Running a Verification

6-16

Create Command-Line Script from Project File
In this section...
“Generate Scripting Files” on page 6-17
“Run an Analysis” on page 6-17

This example shows how to use a project file that you configured in the Polyspace interface to
generate the necessary information to run from the command line. If you have already spent time
configuring your project in the Polyspace interface, this command is useful to extract your setup work
for scripting. For this example, you use the example shipped with Polyspace.

Generate Scripting Files
1 In the Polyspace interface, open the example project by selecting Help > Examples >

Demo_Ada.

This example has been set up and configured with analysis options.
2 Open a command-line terminal and navigate to your Polyspace_Workspace folder. By default it

is:

• Linux — /home/USER/Polyspace_Workspace
• Windows — Users\USER\Documents\Polyspace_Workspace
• Mac — USER/Polyspace_Workspace

3 Navigate down to the example project:

cd Examples/R2017b/Demo_Ada
4 Run the script generation command . (matlabroot is your installed program folder, for example

C:\Program Files\MATLAB\R2017b.)

matlabroot/polyspace/bin/polyspace -generate-launching-script-for Demo_Ada.psprj

Polyspace generates the following folder structureDemo_Ada\Demo_Ada. The lowest level
Demo_Ada contains:

• source_command.txt — List of source files
• options_command.txt — List of the analysis options
• launchingCommand.sh (UNIX) or launchingCommand.bat (DOS) — Shell script that calls

the correct commands

For more details about what files are generated and how to use them, see -generate-launching-
script-for.

Run an Analysis
After you have completed, “Generate Scripting Files” on page 6-17, you can use the files to run an
analysis from the command line. The launching script makes integrating into continuous integration
tools such as Jenkins, easier. Here are a few examples of how to use the generated files to run an
analysis.

 Create Command-Line Script from Project File

6-17

• Run the generated script locally by using the launchingCommand.bat file.

Demo_Ada\Demo_Ada\launchingCommand.bat
• Run the generated script and change the results folder.

Demo_Ada\Demo_Ada\launchingCommand.bat -results-dir Results_Demo_Ada_mine

The extra -results-dir option overrides the results folder specified in the
options_command.txt file.

• Send the analysis to a remove server using the options files.

matlabroot/polyspace/bin/polyspace-remote-ada -server ...
 -options-file Demo_Ada\Demo_Ada\options_command.txt

• Run the analysis from the command line with the -options-file option.

matlabroot/polyspace/bin/polyspace -options-file ...
 Demo_Ada\Demo_Ada\options_command.txt

See Also
-generate-launching-script-for

External Websites
• How do I use Polyspace with Jenkins?

6 Running a Verification

6-18

https://www.mathworks.com/matlabcentral/answers/279990-how-do-i-use-polyspace-bug-finder-with-jenkins

Troubleshooting Verification

• “Hardware Does Not Meet Requirements” on page 7-2
• “Location of Included Files Not Specified” on page 7-3
• “Polyspace Software Cannot Find the Server” on page 7-4
• “Limit on Assignments and Function Calls” on page 7-6
• “Examining the Compile Log” on page 7-7
• “Common Compile Errors” on page 7-8
• “Error from Special Characters” on page 7-15
• “Verification Time Considerations” on page 7-16
• “Displaying Verification Status Information” on page 7-17
• “Ideal Application Size” on page 7-18
• “Optimum Size” on page 7-19
• “Selecting a Subset of Code” on page 7-20
• “Benefits of Methods” on page 7-24
• “Obtaining Configuration Information” on page 7-26
• “Reasons for Unchecked Code” on page 7-27
• “Storage of Temporary Files” on page 7-30
• “Disk Defragmentation and Antivirus Software” on page 7-31
• “Out-of-Memory Errors During Report Generation” on page 7-32

7

Hardware Does Not Meet Requirements
If your computer does not have the minimal hardware requirements, you see a warning during
verification, but the verification continues. For information about hardware requirements for the
Polyspace products, see:

www.mathworks.com/products/polyspaceclientada/requirements.html

To avoid this issue, upgrade your computer to meet the minimal requirements.

7 Troubleshooting Verification

7-2

https://www.mathworks.com/products/availability.html#PA

Location of Included Files Not Specified
If you see the following message, either the included files are missing or you did not specify the
location of included files:
example.adb, line 12 (column 14): Error: "runtime_error (spec)" depends
on "types (spec)"

For information on how to specify the location of include files, see “Create Project”.

 Location of Included Files Not Specified

7-3

Polyspace Software Cannot Find the Server
If the Polyspace software cannot find the server, you see the following message in the log:

Error: Unknown host :

To find the server information:

1 Select Tools > Preferences.
2 Select the Server configuration tab.

How you handle this error depends on the selected remote configuration option.

Remote Configuration Option Solution
Automatically detect the remote server Specify the server by selecting Use the

following server and port and providing
the server name and port.

Use the following server and port Check the server name and port number.

7 Troubleshooting Verification

7-4

For information about setting up a server, see the Polyspace Installation Guide.

 Polyspace Software Cannot Find the Server

7-5

Limit on Assignments and Function Calls
If you start a client verification for a large file, the verification can stop with an error message stating
that the number of assignments and function calls is too large. For example:
*** License error: number of assignments and function calls is too large
*** for the desktop mode (15462 v.s 2000).
*** Aborting.

--- ---
--- Verifier has encountered an internal error. ---
--- Please contact your technical support. ---
--- ---

Failure at: Dec 21, 2009 18:21:42
User time for polyspace-ada: 1773real, 1097.1u + 101s (6.1gc)
Exiting because of previous error

*** End of Polyspace Verifier analysis

The Polyspace Client for Ada software can verify only Ada code with up to 2,000 assignments and
calls.

To verify code containing more than 2,000 assignments and calls, run a server verification using
Polyspace Server for Ada.

7 Troubleshooting Verification

7-6

Examining the Compile Log
The compile log displays compile-phase messages and errors. You can search the log by entering
search terms in the Search box.

To examine errors in the Compile log:

1 In the log area of the Polyspace user interface, click Compile.

A list of compile-phase messages appear in the log part of the window.

2 Click a message to see message details, as well as the full path of the file containing the error.

3 To open the source file referenced by a message, right-click the row for the message. From the
context menu, select Open Source File.

The file opens in your text editor.
4 Fix the error and run the verification again.

 Examining the Compile Log

7-7

Common Compile Errors
In this section...
“Missing specification for unit” on page 7-8
“Calendar not found” on page 7-8
“Not a predefined library unit” on page 7-9
“representation clause appears too late” on page 7-9
“Package system and standard include” on page 7-10
“Unsigned type” on page 7-10
“Function not declared in package” on page 7-10
“pre-elaborated unit” on page 7-11
“actual must be a definite subtype” on page 7-11
“'ref attribute” on page 7-12
“Cannot load s-dec.ads (unit not found)” on page 7-12
“Green Hills standard include” on page 7-13
“Package Analysis Limitation” on page 7-13
“Ambiguous Bounds in Discrete Range” on page 7-14

Missing specification for unit
Problem

You must supply complete specifications associated with a package body verification to the Polyspace
software. If you do not, you might encounter the following error message:

Verifying _pst_main

Verifying my_package

-> Verifier found an error
in ./My_Package.adb, line 2 (column 14):
Missing specification for unit "My_Package"

Solution/Workaround

Include the specifications of the package body in the list of supplied sources.

Explanation

When you supply a package body as the source, and the package body specification as one of the
specifications in one of the -ada-include-dir folders, the Polyspace software reports this error.

Calendar not found
Problem

The compiler did not find the package calendar.

7 Troubleshooting Verification

7-8

Solution/Workaround

In the sources folder, create a file with:

With ada.calendar;
package calendar renames ada.calendar

Explanation

For some compilers, the package calendar is on the top level. For the GNAT compiler, the calendar is
a child of Ada.

Not a predefined library unit
Problem

You see the error message:

"machine_code" is not a predefined library unit

Solution/Workaround

In the sources folder, create a file with the following lines:

with System.Machine_Code;
package Machine_Code renames System.Machine_Code;

Explanation

Depending on the compiler that you are using, the subpackage of the package system can have a
different name.

representation clause appears too late
Problem

The compilation phase stops and displays the warning:

representation clause appears too late

Solution/Workaround

Change:
type the_type is new Integer range 0 .. 10;
var : the_type;
for the_type'size use 16; -- Error : representation clause appears too late

to:
type the_type is new Integer range 0 .. 10;
for the_type'size use 16;

Explanation

If you use a type between its declaration clause and the representation clause, the Polyspace software
displays this warning.

 Common Compile Errors

7-9

Package system and standard include
Problem

The standard include files are dependent on the compiler. You may see the following error message:

-> Verifier found an error in f1.ada, line 253 (column 29): "Offset" not
 declared(1) in "System"
-> Verifier found an error in f2.ada, line 758 (column 43): expected type
 "System.OFFSET"

Solution/Workaround

Copy the system.ads file from ada_include_path into your sources folder and insert the line:

type OFFSET is range -2**31 .. 2**31-1;

If your project source language is Ada83, the ada_include_path is product_root\polyspace
\verifier\ada\ada83include.

If your project source language is Ada95, the ada_include_path is product_root\polyspace
\verifier\ada\ada95include\os-support.

product_root is the folder where Polyspace Client for Ada is installed, for instance C:\Program
Files\Polyspace\PolyspaceForADA_R2017b\

Explanation

This type definition is specific to the AONIX/Alsys Ada compiler.

Unsigned type
Problem

Some code uses unsigned types. The Polyspace compiler does not support unsigned types.

Solution/Workaround

Define unsigned types as follows:

type unsigned_integer is mod 4294967296;
type unsigned_short_integer is mod 65536;
type unsigned_tiny_integer is mod 256;

Function not declared in package
Problem

The package operations does not declare the function New_ATCB. The package
System.Tasking.Initialization declares that function.

Solution/Workaround

Copy the file s-taprop.ads from <product-dir>/adainclude/ into the sources folder. Into the
s-taprop.ads file, insert the following line:

7 Troubleshooting Verification

7-10

function New_ATCB (Self_ID : integer) return Task_ID;

Explanation

Add missing specifications to the package.

pre-elaborated unit
Problem

This package has a pragma preelaborate construct.

Solution/Workaround

Comment out the pragma preelaborate construct.

actual must be a definite subtype
Problem

The compile error message is:

actual for "SOURCE" must be a definite subtype

If the formal subtype is definite, the actual subtype must also be definite. This error is a valid
compilation error in Ada 95 but is not valid in Ada 83. For more information, see the Ada 95 standard
(12.5.1-6) and Ada 95 annotated (12.5.1-28.a).

The following example can be extended to other generic declarations. This example is based on the
unchecked_conversion generic function.

The example code is:

generic
 type SOURCE is limited private;
 type TARGET is limited private;

function UNCHECKED_CONVERSION (S : SOURCE) return TARGET;

with UNCHECKED_CONVERSION;
package Test is
 type INDEX is new INTEGER;
 type DATA_INDEX is new INTEGER;

 type UNCONSTRAINED_DATA_TYPE is array
 (INDEX range <>) of INTEGER;

 subtype CONSTRAINED_DATA_TYPE is
 UNCONSTRAINED_DATA_TYPE (INDEX range INDEX'First..Index'LAST);

 function TO_DATA is new UNCHECKED_CONVERSION
 (SOURCE => UNCONSTRAINED_DATA_TYPE,
 TARGET => INTEGER);

 procedure Main;

end Test;

 Common Compile Errors

7-11

Solution/Workaround

Change the lines:

type SOURCE is limited private;
 type TARGET is limited private;

to:

type SOURCE (<>) is limited private;
type TARGET (<>) is limited private;

to match the Polyspace definitions.

Explanation

The Polyspace provides its own version of Unchecked_Conversion and its own definition of the
SOURCE and the TARGET.

'ref attribute
Problem

The use of the 'ref attribute is not standard. The Polyspace software does not support that attribute.

Two examples that cause a compile error are:

system.address'ref (16#FFFF_FFFF#)

a_var'ref

Solution/Workaround

In the preceding examples, use the following code instead:

system.address (16#FFFF_FFFF#)

var'address

Explanation

This attribute is dependent on the compiler.

Cannot load s-dec.ads (unit not found)
Problem

When compiling VMS Ada code, you may see the following error message:

cannot load s-dec.ads (unit not found)

Solution/Workaround

Comment out every line that uses the AST_entry or Type_class attribute.

7 Troubleshooting Verification

7-12

Explanation

The AST_entry and Type_class attributes are specific to VMS Ada.

Green Hills standard include
Problem

When analyzing a Green Hills® application, you may see compile errors due to:

• The compatibility between the Polyspace and Green Hills include files
• A limitation the Polyspace Verifier encounters when compiling a Green Hills include file

Solution/Workaround

The Polyspace software now provides a specific option for the Green Hills Ada compiler. For more
information, see Target operating system.

Explanation

The $POLYSACE_ADA/adainclude/greenhills folder contains the Green Hills compiler include
files.

Package Analysis Limitation
Problem

Suppose you have a types package that defines a task to a pointer type. Other packages include this
type package using the with clause. When you use that pointer type in the package, you cannot
analyze that package.

Solution/Workaround

1 Copy package specifications that have unsupported construction from the includes folder to
the include-modified folder.

2 In these files, comment out every unsupported construction.
3 Use the -ada-include-dir option to incorporate the modified files in the analysis.

For example:

polyspace-ada -lang ada95 \
-ada-include-dir $HERE/includes \
-ada-include-dir $HERE/includes-modified \
-extensions-for-spec-files "*.a??"

Note If a package is defined in two different folders, the file compiled and analyzed by Polyspace
is the last one specified.

Explanation

By taking these steps, you do not have to modify the original files. You must maintain copies of the
original files in the includes-modified folder. These types of include files do not change very
often.

 Common Compile Errors

7-13

Use this workaround for an Ada compiler standard include file.

Ambiguous Bounds in Discrete Range
Problem

The type System.address must be declared private in the package System (file system.ads).
Otherwise, your verification might fail with the following error:
Verifying _pst_main
Verifying mypackage
mypackage.ada, line xx (column yy): Error: ambiguous bounds in discrete range
Warning: Failed compilation of mypackage

Solution/Workaround

Rerun the verification with the following options:
-OS-target gnat -D PST_GNAT_SYSTEM_ADDRESS_TYPE_IS_PRIVATE

7 Troubleshooting Verification

7-14

Error from Special Characters

Issue
Your file or folder names contain extended ASCII characters, such as accented letters or Kanji
characters. You face file access errors during analysis. Error messages you might see include:

• No source files to analyze
• Control character not valid
• Cannot create directory Folder_Name

Cause
Polyspace does not fully support these characters. If you use extended ASCII in your file or folder
names, your Polyspace analysis may fail due to file access errors.

Workaround
Change the unsupported ASCII characters to standard US-ASCII characters.

 Error from Special Characters

7-15

Verification Time Considerations
In relation to the verification time, consider the following factors:

• Size of the code
• Number of global variables
• Nesting depth of the variables (the more nested the variables are, the longer the verification

takes)
• Depth of the application call tree
• “Intrinsic complexity” of the code, particularly the arithmetic manipulation

Polyspace software provides graphical and textual output to indicate how the verification is
progressing.

7 Troubleshooting Verification

7-16

Displaying Verification Status Information
For client verifications, monitor the progress of your verification using the Output Summary and
Dashboard tabs in the user interface.

For server verifications, use the Polyspace Job Monitor to follow the progress of your verification.

The progress bar highlights each completed phase and displays the amount of time for that phase.
You can estimate the remaining verification time by extrapolating from this data, and considering the
number of files and passes remaining.

For more information, see:

• Client verification: “Monitor Progress” on page 6-2
• Server verification: “Monitor Progress” on page 6-4

 Displaying Verification Status Information

7-17

Ideal Application Size
There is a compromise between the time and resources required to verify an application, and the
resulting selectivity. The larger the project size, the broader the approximations made by Polyspace.
These approximations enable Polyspace to extend the range of project sizes that it can manage and to
solve incomputable problems. You must balance the benefits from verifying the whole of a large
application against the resulting loss of precision.

Begin with package by package verifications. The maximum recommended application size is 100,000
lines of code.

Subdividing an application prior to verification typically has a beneficial impact on selectivity—that is,
more red, green, and gray checks, fewer orange warnings, and therefore more efficient bug
detection.

A compromise between selectivity and size

7 Troubleshooting Verification

7-18

Optimum Size
Polyspace software verifies numerous applications with greater than 100,000 lines of code. However,
as project sizes become very large, the Polyspace Server:

• Makes broader approximations, producing more orange checks.
• Can take much more time to verify the application.

Before you use another form of testing, use the Polyspace software early on in the development
process.

When a small module (file, piece of code, package) is verified using Polyspace, focus on the red and
gray checks. Orange unproven checks at this stage are very useful, because most of them deal with
robustness of the application. The checks change to red, gray, or green as the project progresses and
more and more modules are integrated.

During the integration process, the code might become so large (100,000 lines of code or more) that
the verification of the whole project is not achievable within a reasonable amount of time. You have
several options:

• Keep using Polyspace only upstream in the process.
• Verify subsets of the code.
• Use the -unit-by-unit option, as described in “Subdivide According to Files” on page 7-23.

 Optimum Size

7-19

Selecting a Subset of Code
If a project is subdivided into logical sections by considering data flow, the total verification time is
shorter than for the project considered in one pass. (See also “Volatile Variables”and “Automatic
Stubbing” on page 5-6.)

In such an application, consider the following:

• Function entry points — Refer to the Polyspace execution model because the function entry points
are started concurrently, without assumptions regarding sequence or priority. They represent the
beginning of your call tree.

• Data entry points — Examine the lines in the code where data is acquired as “data entry points”

Consider the following examples.

Example 7.1. Example 1

Procedure complete_treatment_based_on_x(input : integer) is
begin
 thousand of line of computation...
end

Example 7.2. Example 2

procedure main is
begin
 x:= read_sensor();
 y:= complete_treatment_based_on_x(x);
end

Example 7.3. Example 3

REGISTER_1: integer;
for REGISTER_1 use at 16#1234abcd#;
procedure main is
begin
 x:= REGISTER_1;
 y:= complete_treatment_based_on_x(x);
end

In each example, the x variable is a data entry point, and y is the consequence of a data entry point.
y may be formatted data, due to a very complex manipulation of x.

Because x is volatile, y contains all possible formatted data. You can completely remove the
procedure complete_treatment_based_on_x and let automatic stubbing work. It then assigns a
full range of data to y directly.

-- removed body of complete_treatment_based_on_x
procedure main is
begin
x:= ... -- what ever;
y:= complete_treatment_based_on_x(x); -- now stubbed!
end

7 Troubleshooting Verification

7-20

Results
• (–) A slight loss of precision on y. Polyspace considers all possible values for y, including the

formatted values present at the first verification.
• (+) A huge investigation of the code is not required to isolate a meaningful subset.
• (+) Functional modules are not lost.
• (+) The results are still valid, because you do not have to remove a thread that uses shared data.
• (+) The complexity of the code is considerably reduced.
• (+) A high precision level (for example, O2) can be maintained.

Examples of Removable Components
• Error management modules. Contain a large array of structures that are accessed through an

API, but return only a Boolean value. By removing the API code and retaining the prototype, the
automatically generated stub is assumed to return a value in the range [-2^31, 2^31-1], which
includes 1 and 0. The procedure is considered to return the full range of possible results

• Buffer management for mailboxes coming from missing code. Suppose an application reads
a huge buffer of 1024 char, and then uses it to populate three small arrays of data, using a very
complicated algorithm before passing it to the main module. If the buffer is excluded from the
verification and the arrays are initialized with random values instead, the verification of the
remaining code is unaffected.

Subdivide According to Data Flow
Consider the following example.

In this application, var1, var2, and var3 can vary between the following ranges.

var1 Between 0 and 10
var2 Between 1 and 100
var3 Between -10 and 10

Specification of Module A:

Module A consists of an algorithm that interpolates between var1 and var2. That algorithm uses
var3 as an exponential factor. When var1 is equal to 0, the result in var4 is also equal to 0.

 Selecting a Subset of Code

7-21

As a result, var4, var5, and var6 are produced with the following specifications.

Ranges var4var5var6 Between -60 and 110Between 0 and 12Between 0
and 100

Properties A set of properties between
variables

For example:

• If var2 is equal to 0, then var4 > var5 > 5.
• If var3 is greater than 4, then var4 < var5 < 12

Subdivision in accordance with data flow allows modules A and B to be verified separately:

• A uses var1, var2, and var3, initialized respectively to [0;10], [1;100] and [‑10;10].
• B uses var4, var5, and var6, initialized respectively to [-60;110], [0;12], and [‑10;10].

Results:

• (–) A slight loss of precision on the B module verification, because now the combinations for var4,
var5, and var6 are restricted by the A module verification.

• For instance, if the B module included the test:

If var2 is equal to 0, then var4 > var5 > 5

then the dead code on subsequent else clauses are undetected.
• (+) An in-depth investigation of the code is not required to isolate a meaningful subset.
• (+) The results remain valid, because you do not have to remove a thread that changes shared

data.
• (+) The complexity of the code is reduced by a significant factor.
• (+) The maximum precision level can be retained.

 Examples of removable components:

• Error management modules. A function has_an_error_already_occurred might return TRUE
or FALSE. Such a module may contain a big array of structures that are accessed through an API.
The removal of the API code with the retention of the prototype results in the Polyspace
verification producing a stub which returns [-2^31, 2^31-1], including 1 and 0. Therefore, the
procedure has_an_error_already_occurred returns the full range of possible answers, as the
code does at execution time.

• Buffer management for mailboxes coming from missing code. Suppose a large buffer of 1024 char
is read, and the data is then collated into three small arrays of data using a complicated
algorithm. This data is then given to a main module for processing. For the Polyspace Server
verification, the buffer can be removed and the three arrays initialized with random values.

• Display modules.

Subdivide According to Real-Time Characteristics
Another way to split an application is to isolate files that contain only a subset of tasks and to verify
each subset separately.

If a verification is initiated using only a few tasks, Polyspace Server loses information regarding the
interaction between variables.

7 Troubleshooting Verification

7-22

Suppose an application involves tasks T1 and T2, and a variable x.

If T1 modifies x, and T2 is scheduled to read x at a particular moment, subsequent operations in T2
are impacted by the values of x.

As an example, consider that T1 can write either 10 or 12 into x and that T2 can both write 15 into x
and read the value of x. There are two ways to achieve a sound standalone verification of T2:

• x can be declared as volatile to take into account all possible executions. Otherwise, x takes only
its initial value or x remains constant, and T2 verification is a subset of possible execution paths.
You might have precise results, but for only one scenario among possible states for the variable x.

• x can be initialized to the whole possible range [10;15], and then the T2 entry point called.

Subdivide According to Files
Extract a subset of files and perform a verification, in one of three ways:

• Use entry points.
• Create a main that calls randomly those functions that are not called by other functions within

this subset of code.
• Relaunch your verification using the -unit-by-unit option. (For more information, see Verify

files independently.)

When you want to find red errors and bugs in gray code, this method can produce good results.

 Selecting a Subset of Code

7-23

Benefits of Methods
You might want to split the code:

• To reduce the verification time for a particular precision mode.
• To reduce the number of oranges (for details, see the following sections).

The problems that subdivision may create are:

• Orange checks from a lack of information regarding the relationship between modules, tasks, or
variables.

• Orange checks from using too wide a range of values for stubbed functions.

When the Application is Incomplete
When the code consists of a small subset of a larger project, a lot of procedures are automatically
stubbed. Automatic stubbing is done according to the specification or prototype of the missing
functions. Therefore Polyspace assumes that all possible values for the parameter type can be
returned.

Consider two 32-bit integers a and b, which are initialized with their full range due to missing
functions. Here, a*b causes an overflow, because a and b can be equal to 2^31. The number of
incidences of these “data set issue” orange checks can be reduced by precise stubbing.

Now consider a procedure f that modifies its input parameters a and b, both of which are passed by
reference. Suppose that a might be modified to a value between 0 and 10, and b might be modified to
a value between -10 and 10. In an automatically stubbed function, the combination a = 10 and b = 10
is possible, even though it might not be possible with the real function. This approach can introduce
orange checks in a code snippet such as 1/(a*b - 100), where the division would be orange.

• Even where precise stubbing is used, verifying a small part of an application might introduce extra
orange checks. However, the net result from reducing the complexity is to reduce the total
number of orange checks.

• When using the default stubbing, the increase in the number of orange checks is more
pronounced.

Application Code Size
Polyspace can make approximations when computing the possible values of variables in your code.
Such an approximation uses a superset of the actual possible values.

For example, in a relatively small application, the Polyspace Server might retain detailed information
about the data at a particular point in the code. For example, the variable VAR can take the values
{ -2 ; 1 ; 2 ; 10 ; 15 ; 16 ; 17 ; 25 }. If VAR is used to as a divisor, the division is green
(because 0 is not a possible value).

If the program being verified is large, the Polyspace Server simplifies the internal data representation
using a less precise approximation, such as [-2 ; 2] U {10} U [15 ; 17] U {25} . Here, the
same division appears as an orange check.

If the complexity of the internal data becomes even greater later on in the verification, the Polyspace
Server might further simplify the VAR range to [-2 ; 25].

7 Troubleshooting Verification

7-24

When the size of the program becomes large, this phenomenon leads to the increase of the number of
orange warnings.

Note The amount of simplification applied to the data representations also depends on the required
precision level (O0, O2). The Polyspace Server adjusts the level of simplification, for example:

• -O0 — Shorter computation time
• -O1 — Fewer orange warnings
• -O2 — Default and high-precision results
• -O3 — Fewer orange warnings and longer computation time

 Benefits of Methods

7-25

Obtaining Configuration Information
Use the polyspace-ada -ver command to quickly gather information about your system
configuration. You require this information when entering support requests.

Configuration information includes:

• Hardware configuration
• Operating system
• Polyspace licenses
• Specific version numbers for Polyspace products
• Installed Bug Report patches

To obtain configuration information, use the following command:

Polyspace_Install/polyspace/bin/polyspace-ada -ver

Note You can obtain the same configuration information by selecting Help > About in the Polyspace
verification environment.

7 Troubleshooting Verification

7-26

Reasons for Unchecked Code

Issue
After verification, you see in the Code covered by verification graphs that a significant portion of
your code has not been checked for run-time errors.

For instance, in the following graph, the Dashboard pane shows that 2% of your procedures have not
been checked for run-time errors. (In the procedures that were checked, 9% of operations have not
been checked.)

The unchecked code percentage in the Code covered by verification graph covers:

• Procedures and operations that are not checked because they are proven to be unreachable.

They appear gray on the Source pane.

• Functions and operations that are not proven unreachable but not checked for some other reason.

They appear black on the Source pane.

 Reasons for Unchecked Code

7-27

Possible Cause: Early Red or Gray Check
You have a red or gray check towards the beginning of the function call hierarchy. Red or grey checks
can lead to subsequent unchecked code.

• Red check: The verification does not check subsequent operations in the block of code containing
the red check.

• Gray check: Gray checks indicate unreachable code. The verification does not check operations in
unreachable code for run-time errors.

If you call functions from the unchecked block of code, the verification does not check those functions
either. If you have a red or gray check towards the beginning of the call hierarchy, functions further
on in the hierarchy might not be checked. You end up with a significant amount of unchecked code.

Solution

See if the main procedure or another entry point function has red or gray checks. See if you call most
of your functions from the subsequent unchecked code.

To navigate from the main down the function call hierarchy and identify where the unchecked code
begins, use the navigation features on the Call Hierarchy pane. If you do not see the pane by
default, select Window > Show/Hide View > Call Hierarchy. For more information, see “Call
Hierarchy” on page 8-13.

Alternatively, you can consider an arbitrary unchecked function and investigate why it is not checked.
See if the same reasoning applies for many functions.

7 Troubleshooting Verification

7-28

Review the red or gray checks and fix them. See “Review Red Checks” on page 8-18 and “Review
Gray Checks” on page 8-20.

Possible Cause: Incorrect Options
You did not specify the necessary analysis options. When incorrectly specified, the following options
can cause unchecked code:

• Multitasking options: If you are verifying multitasking code, through these options, you specify
your entry point functions. You might not have specified all your entry points.

• Inputs and stubbing options: Through these options, you constrain variable ranges from outside
your code or force stubbing of functions.

Possible errors in specification include:

• You specified variable ranges that are too narrow causing otherwise reachable code to become
unreachable.

• You stubbed some functions unintentionally.

Solution

Check your options in the preceding order. If your specifications are incorrect, fix them.

 Reasons for Unchecked Code

7-29

Storage of Temporary Files
If you specify the option -tmp-dir-in-results-dir, Polyspace does not use the standard /tmp or
C:\Temp folder to store temporary files. Instead, Polyspace uses a subfolder of the results folder. If
the results folder is mounted on a network drive, this action can increase verification time. Use this
option only when the temporary folder partition is not large enough and you need to troubleshoot.

You can specify -tmp-dir-in-results-dir through a line command or the Configuration >
Advanced Settings > Extra Settings field.

7 Troubleshooting Verification

7-30

Disk Defragmentation and Antivirus Software
If a disk defragmentation tool or antivirus software runs on the machine on which your client or
server verification is running, the verification might fail, generating an error message like the
following:

Some stats on aliases use:
 Number of alias writes: 22968
 Number of must-alias writes: 3090
 Number of alias reads: 0
 Number of invisibles: 949
Stats about alias writes:
 biggest sets of alias writes: foo1:a (733), foo2:x (728), foo1:b (728)
 procedures that write the biggest sets of aliases: foo1 (2679), foo2 (2266), foo3 (1288)
**** C to intermediate language translation - 17 (P_PT) took 44real, 44u + 0s (1.4gc)
exception SysErr(OS.SysErr(name="Directory not empty", syserror=notempty)) raised.
unhandled exception: SysErr: No such file or directory [noent]

--
--- ---
--- Verifier has encountered an internal error. ---
--- Please contact your technical support. ---
--- ---

On your machine, you must do the following:

• Stop the disk defragmentation tool.
• Deactivate the antivirus software, or configure exception rules for the antivirus software that

allow Polyspace to run without failure.

 Disk Defragmentation and Antivirus Software

7-31

Out-of-Memory Errors During Report Generation
During generation of very large reports, the software might produce errors that indicate insufficient
memory. For example:
Exporting views...
Initializing...
Polyspace Report Generator
Generating Report

 Converting report
Opening log file: C:\Users\auser\AppData\Local\Temp\java.log.7512
Document conversion failed
.....
Java exception occurred:
java.lang.OutOfMemoryError: Java heap space

To increase the Java® heap size, modify the -Mx option in the Polyspace_Install\polyspace
\bin\architecture\java.opts file. By default, the heap size is set to 512 MB. For 32-bit
machines, you can increase the size to 1 GB. For 64-bit machines, you can specify a higher value, for
example, 2 GB.

7 Troubleshooting Verification

7-32

Reviewing Verification Results

• “Polyspace Check Colors” on page 8-2
• “Verification Following Red and Orange Checks” on page 8-3
• “Project and Results Folder Contents” on page 8-5
• “Result Views in Polyspace User Interface” on page 8-6
• “Why Review Dead Code Checks” on page 8-16
• “Review Red Checks” on page 8-18
• “Review Gray Checks” on page 8-20
• “Review Orange Checks” on page 8-21
• “Review Global Variable Usage” on page 8-24
• “CWE Coding Standard and Polyspace for Ada Results” on page 8-25
• “Add Review Comments to Results” on page 8-27
• “Justify Results Through Code Annotations” on page 8-30
• “Define Custom Annotation Format” on page 8-36
• “Annotation Description Full XML Template” on page 8-44
• “Add Review Comments to Code” on page 8-49
• “Filter and Group Results” on page 8-52
• “Prioritize Check Review” on page 8-54
• “Generate Report” on page 8-55
• “Export Results to Text File” on page 8-58
• “Export Global Variable List” on page 8-60
• “Customize Report Templates” on page 8-62
• “Set Character Encoding Preferences” on page 8-65

8

Polyspace Check Colors
Polyspace software presents verification results as colored entries in the source code. There are four
main colors in the results:

• Red – Indicates code proven to contain an error
• Gray – Indicates unreachable code (dead code).
• Orange – Indicates unproven code (code might have a run-time error).
• Green – Indicates code proven not to have a run-time error

When reviewing verification results, remember these rules:

• An instruction is verified only if no run-time error is proven to occur in the previous instruction.
• The verification assumes that each run-time error causes a “core dump”. The corresponding

instruction is considered to have stopped, even if the actual run-time execution of the code might
not stop. With orange checks, only the green parts propagate through to subsequent checks.

• Focus on the message produced by the verification, and do not jump to false conclusions. You must
understand the color of a check step by step, until you find the root cause of the issue.

• Determine the cause by examining the actual code. Do not focus on what the code is supposed to
do.

8 Reviewing Verification Results

8-2

Verification Following Red and Orange Checks
Verification Following Red and Orange Checks

Polyspace considers that all execution paths that contain a run-time error terminate at the location of
the error. Therefore:

• Following a red check, Polyspace does not analyze the remaining code in the same scope as the
check.

• Following an orange check, Polyspace analyzes the remaining code. But it considers only the
subset of execution paths that did not contain the run-time error.

Use these two rules to understand your checks. The following examples show how the two rules can
result in checks that can be misleading when viewed out of context. Understand the examples below
thoroughly to practice reviewing checks in context of the remaining code.

In this section...
“Verification Following Red Check” on page 8-3
“Green Check Following Orange Check” on page 8-3
“Gray Check Following Orange Check” on page 8-4

Verification Following Red Check
Consider each line of the procedure red, which shows what happens after a red check.
procedure red is
X: integer;
begin
X:= 1 / X;
X:= X + 1;
end;

When Polyspace divides by X, X is not initialized. Therefore, the software generates a red NIV check
for the non-initialized variable X. Execution paths following this statement are stopped. Checks are
not generated for the statement X:= X + 1;

Green Check Following Orange Check
Now consider the procedure propagate, which shows how green checks propagate out of orange
checks.
function read_an_input return integer;
procedure propagate is
X: Integer;
Y: array (0..99) of Integer;;
begin
X:= read_an_input;
Y(X):= 0;
Y(X):= 0;
end main;

For the propagate procedure:

• X is assigned the value of read_an_input. After this assignment, X = [-2^31, 2^31-1].
• At the first array access, an “out of bounds” error is possible because X can be equal to, for

example, -3 as well as 3.

 Verification Following Red and Orange Checks

8-3

• The conditions leading to a run-time error are truncated. They are not considered further in the
verification. On the following line, the executions for which X = [-2^31, -1] and [100,
2^31-1] are stopped.

• At the next instruction, X = [0, 99].
• At the second array access, the check is green because X = [0, 99].

Therefore, green checks can propagate out of orange checks.

Note Through manual stubbing and by using assert, you can use value propagation to restrict input
values for data.

See “Using Pragma Assert to Set Data Ranges” on page 4-17.

Gray Check Following Orange Check
Consider the following example, paying particular attention to the dead (gray) code following the "if"
statement:

function Read_An_Input return integer;
procedure Main is
X: Integer;
Y: array (0..99) of Integer;
begin
X := Read_An_input;
Y(X) := 0; -- [array index may be without its bounds] [x is
initialized]
Y(X-1):= (1 / X) + X ; [array index is within its bounds]
if (X = 0) then
Y(X) := 1; -- this line is unreachable
end if;
end Main;

You can see that:

• The line containing the access to the Y array is unreachable.
• The line is unreachable only if the test for x = 0 is always false.
• You can conclude that the test is false because the input data is not equal to 0. However,

Read_An_Input can represent a value in the full integer range, so this is not the correct
explanation.

Instead, consider the execution path leading to the gray code:

• The orange check on the array access (y[x]) truncates execution paths leading to a run-time error,
meaning that subsequent lines deal with only x = [0, 99].

• The orange check on the division also truncates execution paths that lead to a run-time error, so
instances where x = 0 are also stopped. Therefore, for the code execution path after the orange
division sign, x = [1; 99].

• x is not equal to 0 at this line. The array access is green (y (x – 1).

8 Reviewing Verification Results

8-4

Project and Results Folder Contents
When you run an analysis, Polyspace generates files that contain information about configuration
options and analysis results.

The organization of Polyspace files in the physical folder location follows the hierarchy displayed in
the Polyspace user interface. The project folder contains a subfolder for each module. In each module
folder, there is one or more result subfolder, named Result_#. The number of result folders depends
on whether you overwrite or retain previous results for each new run. To use a different folder
naming convention or different storage location for results, see “Specify Results Folder” on page 3-4.

The project folder has the project file with extension .psprj. If you open a project from a previous
release in the user interface, the project is upgraded for the new release. A backup of the old project
file is saved with the extension .bak.psprj.

Files in the Results Folder
Some of the files and folders in the results folder are described below:

• Polyspace_release_project_name_date-time.log — A log file associated with each
analysis.

• ps_results.rte— An encrypted file containing your Polyspace results. Open this file in the
Polyspace environment to view your results.

• ps_sources.db — A non-encrypted database file listing source files and macros.
• ps_comments.db — An encrypted database file containing your comments and justifications.
• comments_bak — A subfolder used to import comments between results.
• .status and .settings — Two folders that store files required to relaunch the analysis.
• Polyspace-Doc — When you generate a report, by default, your report is saved in this folder

with the name ProjectName_ReportType. For example, a developer report in PDF format would
be, myProject_Developer.pdf.

See Also

Related Examples
• “Specify Results Folder” on page 3-4

 Project and Results Folder Contents

8-5

Result Views in Polyspace User Interface

In this section...
“Results List” on page 8-6
“Source” on page 8-8
“Result Details” on page 8-10
“Variable Access” on page 8-11
“Call Hierarchy” on page 8-13
“Concurrency Modeling” on page 8-15

Results List
The Results List pane lists all checks along with their attributes. To organize your check review,
from the list on this pane, select one of the following options.

• None: Lists all checks without grouping them. The checks are sorted in the following order:

1 Red: Indicates code that is proven to contain an error. The check indicates that the code will
fail every time it is executed.

2 Gray — Indicates unreachable code.
3 Orange — Indicates unproven code that might contain an error.
4 Green — Indicates code that is proven to not contain an error.

• Family: Lists checks grouped by color. Within each color, the checks are organized by group. For
more information on the check groups, see “Run-Time Checks”.

• File: Lists checks grouped by file. Within each file, the checks are grouped by procedure.
• Package: Lists checks grouped by package. Within each package, the checks are grouped by

procedure.

For each check, the Results List pane contains the check attributes, listed in columns:

Attribute Description
Family Group to which the check belongs. For instance,

if you choose the grouping File, this column
contains the name of the file and function
containing the check.

ID Unique identification number of the check. In the
default view on the Results List pane, the
checks appear sorted by this number.

Type Check color
Group Category of the check. For more information on

the checks covered by a group, see the check
reference pages.

Check Description of the error

8 Reviewing Verification Results

8-6

Attribute Description
Information For run-time errors, this attribute indicates

whether the check is related to path or bounded
input values. For coding rule violations, this
attribute indicates whether the rule is Required.

File File containing the instruction where the check
occurs

Package Package containing the instruction where the
check occurs

Function Function containing the instruction where the
check occurs.

Line Line number of the instruction where the check
occurs.

Col Column number of the instruction where the
check occurs. The column number is the number
of characters from the beginning of the line.

% Percentage of checks that are not orange. This
column is most useful when you choose the
grouping Checks by File/Function. The
entry in this column against a file or function
indicates the percentage of checks in the file or
function that are not orange.

Severity Level of severity you have assigned to the check.
The possible levels are:

• Unset
• High
• Medium
• Low

Status Review status you have assigned to the check.
The possible statuses are:

• Unreviewed
• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

Justified Check boxes showing whether you have justified
the checks

Comments Comments you have entered about the check

To show or hide a column, right-click anywhere on the column title. From the context menu, select or
clear the title of the column that you want to show or hide.

 Result Views in Polyspace User Interface

8-7

Using this pane, you can:

• Navigate through checks. For more information, see “Add Review Comments to Results” on page
8-27.

• Organize your check review using column filters. For more information, see “Filter and Group
Results” on page 8-52.

Source
The Source pane shows the source code with colored checks highlighted.

Tooltips

Placing your cursor over a check displays a tooltip that provides range information for variables,
operands, function parameters, and return values.

Examine Source Code

In the Source pane, if you right-click a text string, the context menu provides options to examine
your code. For example, right-click the variable PowerLevel:

8 Reviewing Verification Results

8-8

Use the following options to examine and navigate through your code:

• Search "PowerLevel" in Current Source — List occurrences of the string within the current
source file in the Search pane.

• Search "PowerLevel" in All Source Files — List all occurrences of the string in source files. The
results appear on the Search pane.

Go To Definition — Go to the line of code that contains the definition of PowerLevel. The
software supports this feature for global and local variables, functions and types.

• Go To Line — Open the Go To Line dialog box. If you specify a line number and click Enter, the
software displays the specified line of code.

• Expand All Macros or Collapse All Macros — Display or hide the content of macros in current
source file.

 Result Views in Polyspace User Interface

8-9

Manage Multiple Files in Source Pane

You can view multiple source files in the Source pane.

On the Source pane toolbar, right-click a tab title to manage source files.

From the Source pane context menu, you can:

• Close – Close the currently selected source file.
• Close Others – Close all source files except the currently selected file.
• Close All – Close all source files.
• Next – Display the next view.
• Previous – Display the previous view.
• New Horizontal Group – Split the Source window horizontally to display the selected source file

below another file.
• New Vertical Group – Split the Source window vertically to display the selected source file side-

by-side with another file.
• Floating – Display the current source file in a new window, outside the Source pane.

Result Details
On the Results List pane, if you click a check, you see additional information on the Result Details
pane.

On this pane, you can also assign a Severity and Status to each check. You can also enter comments
to describe the results of your review. This action helps you track the progress of your review and
avoid reviewing the same check twice.

8 Reviewing Verification Results

8-10

Variable Access
The Variable Access pane displays global variables. For each global variable, the pane lists functions
and tasks performing read/write operation on the variables, along with their attributes, such as
values, read/write operations and shared usage.

For each variable and each read/write access, the Variable Access pane contains the relevant
attributes. For the variables, the various attributes are listed in this table.

Attribute Description
Variables Name of Variable, Package_Name. Variable_Name

Package_Name: Name of package where variable is
declared

Values Value (or range of values) of variable
Reads Number of times the variable is read
Writes Number of times the variable is written
Written by task Name of tasks writing on variable
Read by task Name of tasks reading variable

 Result Views in Polyspace User Interface

8-11

Attribute Description
Protection Whether shared variable is protected from concurrent

access

(Filled only when Usage column has entry, Shared)

The possible entries in this column are:

• Critical Section: If variable is accessed in
critical section of code

• Temporal Exclusion: If variable is accessed in
mutually exclusive tasks

For more details on these entries, see “Verification
Mode”.

Usage Shared, if variable is shared between tasks;
otherwise, blank

Line Line number of variable declaration
Col Column number (number of characters from beginning

of line) of variable declaration
File Source file containing variable declaration
Data Type • If the variable has a scalar data type, this column

states the values allowed for the type.
• If the variable is an array or a record, this column

states the values allowed for the data types of its
components.

Detailed Type Data type of variable, if the variable has a scalar data
type.

Double-click a variable name to view read/write access operations on the variable. The arrowhead
symbols and in the Variable Access pane indicate functions performing read and write access
respectively on the global variable. Likewise, tasks performing read and write access are indicated by
the symbols and respectively.

For access operations on the variables, the various attributes described in the pane are listed in this
table.

Attribute Description
Variables Names of procedure (or task) performing read/write

access on the variable, Package_Name.
Procedure_Name

Package_Name: Name of package containing
procedure (or task) definition

Values Value or range of values of variable in the procedure or
task performing read/write access

8 Reviewing Verification Results

8-12

Attribute Description
Written by task Only for tasks: Name of task performing write access

on variable
Read by task Only for tasks: Name of task performing read access

on variable
Line Line number where procedure or task accesses

variable
Col Column number where procedure or task accesses

variable
File Source file containing access operation on variable

You can also perform the following actions from the Variable Access pane.

• View Access Graph

View the access operations on a global variable in graphical format using the Variable Access

pane. Select the global variable and click .

Here is an example of an access graph:

• Show/Hide Non-Shared Variables

Customize the Variable Access pane to show only the shared variables. On the Variable Access

pane toolbar, click the Non-Shared Variables button to show or hide non-shared variables.
• Hide Access in Unreachable Code

Hide read/write access occurring in dead code by clicking the filter button .

Call Hierarchy
The Call Hierarchy pane displays the call tree of procedures in the source code.

 Result Views in Polyspace User Interface

8-13

For each procedure, foo, the Call Hierarchy pane lists the procedures and tasks that call foo
(callers) and those called by foo (callees). The callers are indicated by (procedures), or
(tasks). The callees are indicated by (procedures) or (tasks).

In the following example, the Call Hierarchy pane displays the procedure, SORT_CALIBRATION, in
the package, SENSITIVITY. It also displays the callers and the callees of SORT_CALIBRATION.

Depending on the name, the corresponding line number in the Call Hierarchy pane refers to a
different line in the source code:

• For a procedure name, the line number refers to the beginning of the procedure definition. In the
preceding example, the definition of SENSITIVITY.SORT_CALIBRATION begins on line 97.

• For a callee name, the number refers to the line where the callee is called. In the preceding
example, callee, SENSITIVITY.POLYNOMIA, is called by SENSITIVITY.SORT_CALIBRATION on
line 108.

• For a caller name, the number refers to the line where the caller calls the procedure. In the
preceding example, caller, RUNTIME_ERROR.MAINRTE, calls SENSITIVITY.SORT_CALIBRATION
on line 222.

Tip Select a caller or callee name to navigate to the procedure call in the source code.

You can perform the following actions from the Call Hierarchy pane:

• Show/Hide Callers and Callees

Customize the view to display callers only or callees only. Show or hide callers and callees by
clicking this button

• Go to Caller/Callee Definition

Go directly to the definition of a caller or callee in the source code. Right-click the name of the
caller or callee and select Go To Definition. .

8 Reviewing Verification Results

8-14

Concurrency Modeling
The Concurrency Modeling view displays all the tasks and interrupts that the analysis extracts from
your code and your Polyspace multitasking configuration.

in the table, the functions are listed in the first column by order of decreasing priority. The second
column shows how Polyspace detects each task or interrupt that you manually configured in your
Polyspace project configuration.

From this view, you can:

• Click a function name to go to its definition in the source code.
• Click Manually configured, for functions that are manually configured, to go to the

Multitasking node on the Configuration pane.

 Result Views in Polyspace User Interface

8-15

Why Review Dead Code Checks
In this section...
“Functional Bugs in Gray Code” on page 8-16
“Structural Coverage” on page 8-16

Functional Bugs in Gray Code
Polyspace verification finds different types of dead code. Common examples include:

• Defensive code
• Dead code due to a particular configuration.
• Libraries which are not used to their full extent in a particular context.
• Dead code resulting from bugs in the source code.

The causes of dead code listed in the following examples are taken from critical applications of
embedded software by Polyspace verification.

• A lack of parenthesis and operand priorities in the testing clause can change the meaning
significantly.

• Consider a line of code such as

IF NOT a AND b OR c AND d

Now consider how misplaced parentheses might influence how that line behaves

IF NOT (a AND b OR c AND d)

IF ((NOT (a) AND b) OR (c AND d))

IF NOT (a AND (b OR c) AND d)
• The test of variable inside an unreachable branch of a conditional statement.
• An unreachable “else” clause where the wrong variable is tested in the “if” statement.
• A variable that is supposed to be local to the file but instead is local to the function.
• Wrong variable prototyping leading to a comparison which is always false.

The consequences of dead code and the effort to deal with it is unpredictable. From a one-week effort
of functional testing on target, trying to build a scenario going into that branch, and wondering why
the functional behavior is altered to a three-minute code review discovering the bug.

Polyspace does not measure the impact of dead code.

The tool provides a list of dead code. A short code review enables you to place each entry from that
list into one of the five categories. Doing so identifies known dead code and uncovers real bugs.

The Polyspace experience is that at least 30% of gray code reveals real bugs.

Structural Coverage
Polyspace software performs upper approximations of possible executions. Therefore, even if a line of
code is shown in green, there remains a possibility that it is a dead portion of code. Because

8 Reviewing Verification Results

8-16

Polyspace verification made an upper approximation, it could not conclude that the code was dead.
Instead it concludes that a run-time error could not be found.

Polyspace verification finds around 80% of dead code that the developer would find by doing
structural coverage.

Polyspace verification is intended to be a productivity aid in dead code detection. It detects dead code
which might take days of effort to find by other means.

 Why Review Dead Code Checks

8-17

Review Red Checks
During verification, Polyspace checks each operation in your code for certain run-time errors. After
verification, the software displays the checks on the Results List pane.

A red check indicates that the operation fails the check on all execution paths. For instance, a red
Division by Zero check on a division operation indicates that a division by zero occurs every time
the operation takes place. Therefore, you must fix the code containing a red check.

In this section...
“Step 1: Interpret Check Information” on page 8-18
“Step 2: Determine Root Cause of Check” on page 8-18

Step 1: Interpret Check Information
Select a check on the Results List pane.

• On the Result Details pane, view further information about the check.
• On the Source pane, the operation containing the check is highlighted.

If you place your cursor on the operation, the tooltip provides further information about the check.

Sometimes, this information is enough to understand the root cause of the check. If you can
determine a fix for your code from this information, you do not have to proceed further with this
procedure.

Step 2: Determine Root Cause of Check
If you cannot determine the root cause based on the check information, using navigation shortcuts in
the user interface, navigate to the root cause.

1 Using the tooltips on variables or operations, identify the variable var that causes the check. For
instance, for a Division by Zero error, var can be the denominator variable.

2 Trace the data flow for var.

8 Reviewing Verification Results

8-18

a Browse through the previous instances of var. On the Source pane, place your cursor on
each instance of var to see its values.

Variable How to trace data flow
Local Variable Right-click the variable. Select Search For varname in

Current Source File or Search For varname in All
Source Files.

Global Variable

Right-click the variable.
If the option Show In
Variable Access View
appears, the variable is a
global variable.

i Select the right-click menu option Show In
Variable Access View.

The current instance of the variable is shown on the
Variable Access pane.

ii Select the previous instances of the variable on this
pane.

Write operations on the variable are indicated with
 and read operations with .

Tip On the Variable Access pane, drag the Line
column to the left. You can then easily see the line
numbers during navigation.

Procedure argument

procedure func(..,arg: in float,..) is
.
.
end func;

i
On the Result Details pane, select the button.

On the Call Hierarchy pane, you see the calling
functions indicated with .

ii Select a calling function name. You go to the call to
func in your source.

iii Identify the variable in the call to func that maps to
arg. This variable is your new variable to trace
back.

Tip On the Call Hierarchy pane, drag the Line column
to the left. You can then easily see the line numbers
during navigation.

Function return value

ret := func();

i Find the function definition.

Right-click func on the Source pane. Select Go To
Definition, if the option exists.

ii In the definition of func, identify each return
statement. The variable that the function returns is
your new variable to trace back.

b Find the instance where var acquires the value that can cause the run-time error.
3 If var obtains values from another variable, trace the data flow for the second variable.

Continue this process until you identify the root cause of the check.

 Review Red Checks

8-19

Review Gray Checks
Gray checks indicate code that cannot be reached during run-time.

If the gray check indicates defensive code, ignore the check. For instance, you can have error
handling tests in your code. If the errors do not occur, the test blocks appear gray. However, you
might want to retain the error handling test.

In some cases, unreachable code results from coding errors. Therefore, you must review the gray
checks. Also, if you do not want to retain unnecessary code, review and fix gray checks.

Note Following a red check, Polyspace does not verify the remaining code in the same scope as the
check. However, this code does not appear gray on the Source pane.

Review and fix the red checks so that Polyspace can verify the remaining code. For more information,
see “Review Red Checks” on page 8-18.

1 After verification, see the code coverage metrics on the Dashboard pane.

The coverage metrics are displayed through the Code covered by verification graph. The graph
displays:

• Percentage of code covered by verification.
• Percentage of procedures covered by verification.

2 If the percentage of procedures covered is less than 100, investigate why there are unreachable
procedures. Select the column graph to see the full list of unreachable procedures.

3 Investigate the Unreachable code checks further.
4 If you determine that the check represents defensive code, ignore the check. Add a comment and

justification in your result or code explaining the rationale.

8 Reviewing Verification Results

8-20

Review Orange Checks
During verification, Polyspace checks each operation in your code for certain run-time errors. After
verification, the software displays the checks on the Results List pane.

An orange check indicates that the operation fails the check only on certain execution paths.
Investigate whether the execution paths can occur during run time. If you determine that the
execution paths can occur, you must fix the code containing the check.

In this section...
“Step 1: Interpret Check Information” on page 8-21
“Step 2: Determine Root Cause of Check” on page 8-21
“Step 3: Trace Check to Polyspace Assumption” on page 8-23

Step 1: Interpret Check Information
Select a check on the Results List pane.

• On the Result Details pane, view further information about the check.
• On the Source pane, the operation containing the check is highlighted.

If you place your cursor on the operation, the tooltip provides further information about the check.

Sometimes, this information is enough to understand the root cause of the check. If you can
determine a fix for your code from this information, you do not have to proceed further with this
procedure.

Step 2: Determine Root Cause of Check
If you cannot determine the root cause based on the check information, using navigation shortcuts in
the user interface, navigate to the root cause.

 Review Orange Checks

8-21

1 Using the tooltips on variables or operations, identify the variable var that causes the check. For
instance, for a Division by Zero error, var can be the denominator variable.

2 Trace the data flow for var.

a Browse through the previous instances of var. On the Source pane, place your cursor on
each instance of var to see its values.

Variable How to trace data flow
Local Variable Right-click the variable. Select Search For varname in

Current Source File or Search For varname in All
Source Files.

Global Variable

Right-click the variable.
If the option Show In
Variable Access View
appears, the variable is a
global variable.

i Select the right-click menu option Show In
Variable Access View.

The current instance of the variable is shown on the
Variable Access pane.

ii Select the previous instances of the variable on this
pane.

Write operations on the variable are indicated with
 and read operations with .

Tip On the Variable Access pane, drag the Line
column to the left. You can then easily see the line
numbers during navigation.

Procedure argument

procedure func(..,arg: in float,..) is
.
.
end func;

i
On the Result Details pane, select the button.

On the Call Hierarchy pane, you see the calling
functions indicated with .

ii Select a calling function name. You go to the call to
func in your source.

iii Identify the variable in the call to func that maps to
arg. This variable is your new variable to trace
back.

Tip On the Call Hierarchy pane, drag the Line column
to the left. You can then easily see the line numbers
during navigation.

Function return value

ret := func();

i Find the function definition.

Right-click func on the Source pane. Select Go To
Definition, if the option exists.

ii In the definition of func, identify each return
statement. The variable that the function returns is
your new variable to trace back.

b Find the instance where var acquires the value that can cause the run-time error.

8 Reviewing Verification Results

8-22

3 If var obtains values from another variable, trace the data flow for the second variable.

Continue this process until you identify the root cause of the check.
4 For orange checks, you have an additional option that helps with root cause investigation. If a

function is called several times and an error occurs only on certain calls, you can identify which
function call caused the check. For more information, see Sensitivity context.

Step 3: Trace Check to Polyspace Assumption
If you cannot determine a coding error, try to trace the check to a Polyspace assumption earlier in the
code. If the assumption is broader than what you expect, do one of the following:

• If you can use an analysis option to relax the assumption, rerun verification using that option.

In particular, determine if you must specify constraints outside your code or provide other
contextual information. See “Inputs & Stubbing”.

• See if you can improve your coding design to avoid the assumption.

For instance, goto statements interrupt the flow and can cause orange checks during verification.
Avoid goto statements in your code.

To improve your coding design:

• Enforce limits on code complexity metrics.
• Observe coding rules.

• Ignore the orange check. Add a comment and justification in your result or code describing why
you ignored the check.

 Review Orange Checks

8-23

Review Global Variable Usage
After verification, Polyspace displays a list of global variables in your source code. Using this list:

• You can remove variables that you define but do not use.

Such variables appear gray on the Results List and Source pane.
• For code intended for multitasking, you can see which variables are not protected from concurrent

access by multiple tasks.

• If Polyspace proves that a variable is protected, it appears green on the Results List and
Source pane.

• Otherwise, it appears orange.

For more information, see “Global Variables”.

To review global variable usage:

1 On the Results List pane, from the list, select Family.

The global variables appear together under one node.
2 Expand the Global Variable node. Review each result under the nodes:

• Shared > Potentially unprotected variable.
• Not shared > Unused non-shared variable.

3 For each potentially unprotected variable, select the variable name.

a On the Result Details pane, view which tasks can access the variable.
b Read and write operations on the variable appear in this pane. Select each operation to

navigate to it in your source code.

This action also displays more details of the operation on the Variable Access pane.
c To review your multitasking options, select Window > Show/Hide View > Configuration.

Identify whether you can leverage some of the existing protection mechanisms to protect
your variable. For more information on multitasking verification, see Critical section
details or Temporally exclusive tasks.

8 Reviewing Verification Results

8-24

CWE Coding Standard and Polyspace for Ada Results
Common Weakness Enumeration (CWE) is a dictionary of common software weakness types that can
occur in software architecture, design, code, or implementation. These weaknesses can lead to
security vulnerabilities.

CWE and Polyspace for Ada
The CWE dictionary assigns a unique identifier to each software weakness type. These identifiers
serve as a common language for describing software security weaknesses and a standard for software
security tools targeting these weaknesses. For more information, see Common Weakness
Enumeration.

Polyspace for Ada results are mapped to CWE identifiers (IDs). Using the results, you can evaluate
your code against the CWE standard. For instance, CWE ID 456 (Missing Initialization of a Variable)
maps to the run-time check, Non-initialized variable and Non-initialized local variable.

For more information on the CWE Compatibility and Effectiveness Program, see CWE Compatibility.

Find CWE IDs from Polyspace Results
The following table lists the CWE IDs (version 2.8) addressed by Polyspace for Ada with its
corresponding run-time checks.

CWE ID CWE ID Description Polyspace for Ada Check
120 Buffer copy without checking

size of input
Scalar and Float
Overflow

125 Out-of-bounds read Correctness Condition
131 Incorrect calculation of buffer

size
Scalar and Float
Overflow

134 Use of externally-controlled
format string

Correctness Condition

136 Type errors Correctness Condition
137 Representation errors Correctness Condition
189 Numeric errors Power Arithmetic
190 Integer overflow or wraparound Scalar and Float

Overflow
191 Integer underflow (wrap or

wraparound)
Scalar and Float
Overflow

362 Concurrent execution using
shared resource with improper
synchronization ('race
condition')

Shared unprotected
global variable

366 Race condition within a thread Shared unprotected
global variable

369 Divide by zero Division by Zero

 CWE Coding Standard and Polyspace for Ada Results

8-25

https://cwe.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/compatible/
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/134.html
https://cwe.mitre.org/data/definitions/136.html
https://cwe.mitre.org/data/definitions/137.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/369.html

CWE ID CWE ID Description Polyspace for Ada Check
456 Missing initialization of a

variable
Non-Initialized Local
Variable

Non-Initialized Variable
457 Use of uninitialized variable Non-Initialized Local

Variable

Non-Initialized Variable
476 NULL pointer dereference Correctness Condition
561 Dead code Unreachable Code
570 Expression is always false Unreachable Code
571 Expression is always true Unreachable Code
682 Incorrect calculation Arithmetic Exceptions

Scalar and Float
Overflow

835 Loop with unreachable exit
condition

Non Terminating Loop

8 Reviewing Verification Results

8-26

https://cwe.mitre.org/data/definitions/456.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/561.html
https://cwe.mitre.org/data/definitions/570.html
https://cwe.mitre.org/data/definitions/571.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/835.html

Add Review Comments to Results
This example shows how to comment on results in the Polyspace user interface. When reviewing
results, you can assign a status to them, and enter comments to describe the results of your review.
These actions help you to track the progress of your review and avoid reviewing the same result
twice.

In this section...
“Assign and Save Comments” on page 8-27
“Import Review Comments from Previous Verifications” on page 8-28

Assign and Save Comments
1 On the Results List pane, select the result that you want to review.
2 Investigate the result further.

For more information, see:

• “Review Red Checks” on page 8-18
• “Review Gray Checks” on page 8-20
• “Review Orange Checks” on page 8-21
• “Review Global Variable Usage” on page 8-24

3 On the Results List or Result Details pane, provide the following review information for the
result:

• Severity to describe how critical you consider the issue.
• Status to describe how you intend to address the issue.

To justify the check, select one of the Status options, Justified, No action planned or
Not a defect. You can view the percentage of results justified per file and function. On the
Results List pane, from the list, select File. View the entries on the Justified column.

You can also create your own status or associate justification with an existing status. Select
Tools > Preferences and create or modify statuses on the Review Statuses tab.

• Comment to describe any other information about the result.
4 To provide review information for a group of results, select the results in the group together.

Then provide review information for a single result.

To select the results:

• If the results are contiguous, left-click the first result. Then Shift click the last result.
• If the results are not contiguous, Ctrl click each result.
• If the results belong to the same group and have the same color, right-click one result. From

the context menu, select Select All Color Type Results.

For instance, select Select All Orange "Overflow" Results.
5 To save your review comments, select File > Save. Your comments are saved with the

verification results.

 Add Review Comments to Results

8-27

Import Review Comments from Previous Verifications
• “Import Comments” on page 8-28
• “Specify Automatic Comment Import from Last Verification” on page 8-28
• “View Imported Comments That Do Not Apply” on page 8-28

After you have reviewed verification results, you can reuse your review comments for subsequent
verifications.

After you import checks and comments, clicking the icon skips justified checks. Therefore, you do
not have to review checks twice.

Import Comments

1 Open your verification results.
2 Select Tools > Import Comments.
3 Navigate to the folder containing your previous results.
4 Select the results file with extension .rte and then click Open.

The review comments from the previous results are imported into the current results, and the
Import checks and comments report opens. For information on this report, see “View Imported
Comments That Do Not Apply” on page 8-28.

Specify Automatic Comment Import from Last Verification

1 Select Tools > Preferences, which opens the Polyspace Preferences dialog box.
2 Select the Project and Results Folder tab.
3 Under Import Comments, select Automatically import comments from last verification.
4 Click OK.

After you set this preference, for every run, the software imports review comments from the last
run.

View Imported Comments That Do Not Apply

You can directly import review comments from another set of results into the current results.
However, it is possible that your review comments do not apply to a subsequent verification because:

• You have changed your source code so that the check is no longer present.
• You have changed your source code so that the check color has changed.
• You have already entered different review comments for the same check.

The Import Checks and Comments Report highlights differences between two verification results.
When you import comments from a previous verification, you can see this report. If you have closed
the report after an import, to review the report again:

1 Select Window > Show/Hide View > Import Comments Report.

The Import Checks and Comments Report opens, highlighting differences in the two results.

8 Reviewing Verification Results

8-28

2 Review the differences between the two results.

• If the check color changes, Polyspace populates the Comment field but not the fields
Severity, Status or Justified.

• If a check no longer appears in the code, Polyspace highlights only the change in the Import
Checks and Comments Report. It does not import review comments from the previous result.

• If you have already entered different review comments for the same check, Polyspace
highlights only the change in the Import Checks and Comments Report. It does not import
review comments from the previous result.

 Add Review Comments to Results

8-29

Justify Results Through Code Annotations
If Polyspace finds a known or acceptable result in your code, you can suppress it in subsequent
analyses. Add code annotations indicating that you have reviewed the issue and you do not intend to
fix it. Polyspace hides results justified through annotations in Results List pane.

To make hidden results visible again, in the Results List pane header, click Showing and clear the
appropriate box.

You can add annotations from the Polyspace user interface, or by typing them directly in your code.

Note Results suppressed through annotations still appear in generated reports.

Add Annotations from the User Interface
When you review an analysis result, you can assign a Status and Severity, and add a Comment from
either the Results List or Results Details panes.

8 Reviewing Verification Results

8-30

To convert the assigned Status, Severity, and Comment to a code annotation

1 Right-click the result in the Results List pane, and select Add Pre-Justification to Clipboard.
2 Right-click the result again and select Open Editor. The software opens the source file to the

location of the defect.
3 Paste the contents of the clipboard on the line containing the defect or coding rule violation. The

result Status, Severity, and Comment are converted to an annotation with a Polyspace syntax
format.

 Justify Results Through Code Annotations

8-31

Beta : Long_Float;
 procedure Square_Root is
 Alpha : Float := Random.random;
 Gamma : long_float;
 begin
 Square_Root_conv (Alpha, Beta);
 Beta := Beta - 0.75;
 Gamma := sqrt(Beta); -- polyspace RTE:EXCP [No action planned:Low] "Additional comment"
 end Square_Root;

}

If you save your source file and rerun the analysis, annotated results with status Justified, No
action planned, or Not a defect are hidden in the Results List pane.

Type Annotations Directly in Your Code
To add comments directly to your code, use the Polyspace annotation syntax. The syntax is not case-
sensitive, and has the following format:

• Annotation for current line of code:

line of code; -- polyspace Family:Type
• Annotation for current line of code and n following lines:

code; -- polyspace +n Family:Type
• Annotation for block of code:

-- polyspace-begin Family:Type
code;
-- polyspace-end Family:Type

Annotations begin with the keyword polyspace, and must include Family and Type field values.
You can optionally specify Status, Severity, and Comment field values.

polyspace Family:Type [Status:Severity] "Comment"

8 Reviewing Verification Results

8-32

If you do not specify a status, Polyspace considers the result justified, and assigns the status No
action planned to the result.

Use this table to replace the different annotation fields with their allowed values, or see the examples
on page 8-34.

Field Allowed Value
Family Type of analysis result:

• RTE
• VARIABLE

Use the asterisk character to specify all analysis
results *:*.

Type For RTE, use the acronyms for run-time checks.
see “Run-Time Checks”.

For VARIABLE, the only allowed value is the
asterisk character " * ".

Use the asterisk character " * " to specify all
types in a family [RTE:*].

Status Text to indicate how you intend to address the
error in your code. This value populates the
Status column in the Results List pane:

• Unreviewed
• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

Polyspace suppresses results annotated with
status Justified, No action planned, or Not
a defect in subsequent analyses. If you specify
a status that is not an allowed value, Polyspace
stores it as a custom status.

 Justify Results Through Code Annotations

8-33

Field Allowed Value
Severity Text to indicate how critical you consider the

error in your code. This value populates the
Severity column in the Results List pane:

• Unset
• High
• Medium
• Low

If you specify a severity that is not an allowed
value, Polyspace appends it to the status field and
stores it as a custom status. For example, [To
investigate:sporadic] is displayed in the
Status column of the Results List pane as To
investigate sporadic.

Comment Additional text, such as a keyword or an
explanation for the status and severity. This value
populates the Comment column in the Results
List pane.

Syntax Examples
Suppress a Single Result

Enter an annotation on the same line as the result and specify the Family (RTE) and Type (ZDV).
When you do not specify a status, Polyspace assigns the status No action planned, and suppresses
the result in subsequent analyses.

code; -- polyspace RTE:EXCP

Suppress All Run-Time Errors Over Multiple Lines

Enter an annotation with +n between polyspace and the Family:Type entries.

The following annotation applies to lines 4–7. The line count includes code, comments, and blank
lines.

4. code ; -- polyspace +3 RTE:*
5. -- comment
6.
7. code;
8. code;

Specify Multiple Families in the Same Annotation

Enter each family separated by a space. The following annotation applies to all run-time errors and to
all global variable results.

some code; -- polyspace RTE:* VARIABLE:*

8 Reviewing Verification Results

8-34

Specify Multiple Types in the Same Annotation

After you specify the Family (RTE), enter each Type separated by a comma.

 code; -- polyspace RTE:NIVL, ZDV

Add Explanatory Comments to Annotation

After you specify a Family and Type, you can add a Comment with additional information for your
justification. You can provide a comment for all families and types, or a comment for each family or
type.

//Single comment
code; -- polyspace RTE:EXCP VARIABLE:* "Comment applies to RTE and global variables results"

//Multiple comments incorrect syntax:
code; -- polyspace RTE:* "Comment applies to RTE results" VARIABLE:* "Comment applies to global variables results"

//Multiple comments correct syntax:
code; -- polyspace RTE:* "Comment applies to RTE results" polyspace VARIABLE:* "Comment applies to global variables results"

In annotations, Polyspace ignores all text following a Comment. To specify additional Family:Type,
[Status:Severity], or Comment entries, you must reenter the keyword polyspace after a
comment.

Set Status and Severity

You can specify allowed values on page 8-32, or enter custom values for status and severity. A custom
severity entry is appended to the status and stored as a custom Status in the user interface.

//Set Status only
code; -- polyspace RTE:* [To fix] "some comment"

//Set Status 'To fix' and Severity 'High'
code; -- polyspace RTE:EXCP [To fix: High] "some comment"

//Set custom status 'Assigned' and Severity 'Medium'
code; -- polyspace VARIABLE:* [Assigned: Medium]

See Also
-xml-annotations-description

More About
• “Define Custom Annotation Format” on page 8-36

 Justify Results Through Code Annotations

8-35

Define Custom Annotation Format
This example shows how to create and edit an XML file to define an annotation format, and map it to
the Polyspace annotation syntax.

To get started, copy the following code to a text editor and save it on your machine as
annotations_description.xml.

8 Reviewing Verification Results

8-36

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Family="example XML">

 <Expressions Search_For_Keywords="myKeyword"
 Separator_Acronyms="," >
 <!-- Define annotation format in this
 section by adding <Expression/> elements -->

 <Expression Kind="SAME_LINE"
 Regex="myKeyword\s+(\w+(\s*,\s*\w+)*)"
 Rules_Position="1"
 />

 <Expression Kind="GOTO_INCREMENT"
 Regex="myKeyword\s+(\+\d+\s)(\w+(\s*,\s*\w+)*)"
 Increment_Position="1"
 Rules_Position="2"
 />

 <Expression Kind="BEGIN"
 Regex="myKeyword\s*(\w+(\s*,\s*\w+)*)\s*Block_on"
 Rules_Position="1"
 Case_Insensitive="true"
 />

 <Expression Kind="END"
 Regex="myKeyword\s*(\w+(\s*,\s*\w+)*)\s*Block_off"
 Rules_Position="1"
 />
 <Expression Kind="END_ALL"
 Regex="myKeyword\sBlock_off_all"
 />

 <Expression Kind="SAME_LINE"
 Regex="myKeywords\s+(\w+(\s*,\s*\w+)*)(\s*\[(\w+\s*)*([:]\s*(\w+\s*)+)*\])*(\s*-\s*)*([^-]*)(\s*-)*"
 Rules_Position="1"
 Status_Position="4"
 Severity_Position="6"
 Comment_Position="8"
 />
 <!-- SAME_LINE example with more complex Regex.
 Matches the following annotations:
 -- myKeywords 50 [my_status:my_severity] -Additional comment-
 -- myKeywords 50 [my_status]
 -- myKeywords 50 [:my_severity]
 -- myKeywords 50 -Additional comment-
 -->

 </Expressions>

 <Mapping>
 <!-- Map your annotation syntax to the Polyspace annotation

 Define Custom Annotation Format

8-37

 syntax by adding <Acronym_Mapping /> elements in this section -->

 <Acronym_Mapping Rule="100" Type="RTE" Acronym="ZDV"/>
 <Acronym_Mapping Rule="101" Type="RTE" Acronym="NIVL"/>
 <Acronym_Mapping Rule="50" Type="VARIABLE" Acronym="*"/>
 </Mapping>
</Annotations>

The XML file consists of two parts:

• <Expressions>...</Expressions> where you define the format of your annotation syntax.
• <Mapping>...</Mapping> where you map your syntax to the Polyspace annotation syntax.

After you are done editing this file, Polyspace can interpret your custom code annotation when you
invoke the option -xml-annotations-description.

Define Annotation Syntax Format
To define an annotation syntax in Polyspace, your syntax must follow a pattern that you can represent
with a regular expression. See “Regular Expressions” (MATLAB). It is recommended that you include
a keyword in the pattern of your annotation syntax to help identify it. In this example, the keyword is
myKeyword. Set the attribute Search_For_Keywords equal to this keyword.

Once you know the pattern of your annotation, you can define it in the XML by adding an
<Expression/> element and specifying at least the attributes Kind, Regex, and Rules_position.
For instance the first <Expression /> element in annotations_description.xml defines an
annotation with the following attributes:

• Kind="SAME_LINE". The annotation applies to code on the same line.
• Regex="myKeyword\s+(\w+(\s*,\s*\w+)*)". Polyspace uses the regular expression (regex)

to search for a string that begins with myKeyword, followed by a space \s+. Polyspace then
searches for a capturing group (\w+(\s*,\s*\w+)*) that includes an alphanumeric rule
identifier \w+ and, optionally, additional comma-separated rule identifiers (\s*,\s*\w+)*.

• Rules_Position="1". The integer value of this attribute corresponds to the number of opening
parentheses preceding the relevant capturing group in the regex. In myKeyword\s+(\w+
(\s*,\s*\w+)*), one opening parenthesis precedes the capturing group of the rule identifier
(\w+(\s*,\s*\w+)*). If you wanted to match rule identifiers captured by (\s*,\s*\w+), then
you would set Rules_Position="2", since two opening parentheses precede this capturing
group.

The list of attributes and their values are listed in this table. The example column refers to the format
defined in annotations_description.xml.

Attribute Use Value Example
Kind Required SAME_LINE Applies only on the

same as the annotation.

code; -- myKeyword 100

8 Reviewing Verification Results

8-38

Attribute Use Value Example
GOTO_INCREMENT Applies on the same line

as the annotation, and
the following n lines.

3. code; -- myKeyword +3 ALL_MISRA
4. -- commments
5.
6. code;
7. code;

The preceding
annotation applies to
lines 3–6 only.

BEGIN Applies to same line and
all following lines until a
corresponding
expression with
attribute Kind="END"
or "END_ALL", or until
the end of the file.

 -- myKeyword 100, 101 Block_on
 Code block 1;
 ...

END Stops the application of
a rule declared by a
corresponding
expression with
attribute
Kind="BEGIN".

 -- myKeyword 100, 101 Block_on
 Code block 1;
 ...
 More code;
 -- myKeyword 100 Block_off

Only rule 100 is turned
off. Rule 101 still
applies.

 Define Custom Annotation Format

8-39

Attribute Use Value Example
END_ALL Stops all rules declared

by an expression with
attribute
Kind="BEGIN".

 -- myKeyword 100, 101 Block_on
 Code block 1;
 ...
 More code;
 -- myKeyword Block_off_all

Both rules 50 and 51
are turned off.

Regex Required Regular expression
search string

See “Regular
Expressions”
(MATLAB).
Regex="myKeyword\s
+(\w+(\s*,\s*\w
+)*)" matches these
expressions:

-- myKeyword 100, 101
-- myKeyword 50

Rules_Position Required, except when
you set
Kind="END_ALL"

Integer The integer value of this
attribute corresponds to
the number of opening
parentheses in the
regex before the
relevant search
expression.

<Expression Kind="GOTO_INCREMENT"
 Regex="myKeyword\s+(\+\d+\s)(\w+(\s*,\s*\w+)*)"
 Increment_Position="1"
 Rules_Position="2"
 />

The search expression
for the rule, \w+
(\s*,\s*\w+)*, is
after the second
opening parenthesis of
the regex.

8 Reviewing Verification Results

8-40

Attribute Use Value Example
Increment_Position Required only when you

set
Kind="GOTO_INCREME
NT"

Integer The integer value of this
attribute corresponds to
the number of opening
parentheses in the
regex before the
relevant search
expression.

<Expression Kind="GOTO_INCREMENT"
 Regex="myKeyword\s+(\+\d+\s)(\w+(\s*,\s*\w+)*)"
 Increment_Position="1"
 Rules_Position="2"
 />

The search expression
for the increment, \+\d
+\s, is after the first
opening parenthesis of
the regex.

Status_Position Optional Integer See
Increment_Position
example. When you use
this attribute, the entry
in your annotation is
displayed in the Status
column of the Results
List pane of the user
interface.

Severity_Position Optional Integer See
Increment_Position
example. When you use
this attribute, the entry
in your annotation is
displayed in the
Severity column of the
Results List pane of
the user interface.

 Define Custom Annotation Format

8-41

Attribute Use Value Example
Comment_Position Optional Integer See

Increment_Position
example. When you use
this attribute, the entry
in your annotation is
displayed in the
Comment column of
the Results List pane
of the user interface.
Your comment is
appended to the string
Justified by
annotation in
source:

Case_Insensitive Optional true/false When you set this
attribute to "true", the
regular expression is
case insensitive,
otherwise it is case-
sensitive. If you do not
declare this attribute in
your expression, the
regular expression is
case-sensitive. For
Case_Insensitive="
true", these
annotations are
equivalent:

-- MYKEYWORD ALL_MISRA BLOCK_ON

-- mykeyword all_misra block_on

Map Your Annotation to the Polyspace Annotation Syntax
After you define your annotation format, you can map the rule identifiers you are using to their
corresponding Polyspace annotation syntax. You can do this mapping by adding an
<Acronym_Mapping /> element and specifying attributes Rule, Type, and Acronym. For instance if
rule identifier 100 corresponds to a division by zero run-time error, map it to the Polyspace syntax
RTE:ZDV using the following element:

<Acronym_Mapping Rule="100" Type="RTE" Acronym="ZDV"/>

The list of attributes and their values are listed in this table. The example column refers to the format
defined in annotations_description.xml.

8 Reviewing Verification Results

8-42

Attribute Dependency Value Example
Rule Required User defined See the mapping

section of
annotations_descri
ption.xml

Type Required Corresponds to
Polyspace results family.
For a list of allowed
values, see allowed
values on page 8-38.

See the mapping
section of
annotations_descri
ption.xml

Acronym Required Corresponds to
Polyspace results rule.
For a list of allowed
values, see allowed
values on page 8-38.

See the mapping
section of
annotations_descri
ption.xml

See Also
“Annotation Description Full XML Template” on page 8-44

 Define Custom Annotation Format

8-43

Annotation Description Full XML Template
This table lists all the elements, attributes, and values of the XML you can use to define an annotation
format and map it to the Polyspace annotation syntax. For an example of how to edit an XML to define
annotation syntax, see “Define Custom Annotation Format” on page 8-36.

Element Attribute Use Value
Annotations Family Required User defined string. For

example, "Custom
Annotations"

Expressions Search_For_Keyword
s

Required User defined string. For
example, "myKeyword"

Separator_Acronyms Required User defined string. For
example, ","

Separator_Type_Wit
h_Acronym

Optional User defined string. For
example, " "

Separator_Types_An
d_Acronym_List

Optional User defined string. For
example, ":"

Expression Kind Required SAME_LINE
GOTO_INCREMENT
BEGIN
END
END_ALL
NEXT_CODE_LINE

The annotation applies
to the next line of code.
Comments and blank
lines are ignored.
GOTO_LABEL
LABEL
XML_START
XML_CONTENT

The annotation for this
expression must be on a
single line.
XML_END

Regex Required Regular expression
search string that
matches the pattern of
your annotation.

8 Reviewing Verification Results

8-44

Element Attribute Use Value
Rules_Position Required, except when

you set
Kind="END_ALL" or
"LABEL"

Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regex before the
relevant search
expression.

Increment_Position Required only when you
set
Kind="GOTO_INCREME
NT"

Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regex before the
relevant search
expression.

Status_Position Optional Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regex before the
relevant search
expression.

Severity_Position Optional Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regex before the
relevant search
expression.

Comment_Position Optional Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regex before the
relevant search
expression.

Label_Position Required only when you
set
Kind="GOTO_LABEL"
or "LABEL"

Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regex before the
relevant search
expression.

 Annotation Description Full XML Template

8-45

Element Attribute Use Value
Case_Insensitive Optional true/false. When you do

not declare this
attribute, the default
value is false.

Is_Pragma Optional true/false. When you do
not declare this
attribute, the default
value is false.

Set this attribute to true
if you want to declare
your annotation using a
pragma instead of a
comment.

Applies_Also_On_Sa
me_Line

Optional true/false. When you do
not declare this
attribute, the default
value is true.

Use this attribute to
enable annotations with
the old Polyspace syntax
to apply on the same
line.

Mapping None None None
Acronym_Mapping Rule Required User defined

Type Required Corresponds to
Polyspace results rule.
For a list of allowed
values, see allowed
values on page 8-38.

Acronym Required Corresponds to
Polyspace results family.
For a list of allowed
values, see allowed
values on page 8-38.

Example
The following example code covers some of the less commonly used attributes for defining
annotations in XML.

8 Reviewing Verification Results

8-46

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Family="XML Template">

 <Expressions Separator_Acronyms=","
 Search_For_Keywords="myKeyword">

 <Expression Kind="GOTO_LABEL"
 Regex="(\A|\W)myKeyword\s+S\s+(\d+(\s*,\s*\d+)*)\s+([a-zA-Z_-]\w+)"
 Rules_Position="2"
 Label_Position="4"

 />

 <Expression Kind="LABEL"
 Regex="(\A|\W)myKeyword\s+L:(\w+)"
 Label_Position="2"

 />
 <!-- Annotation applies starting current line until
 next declaration of label word "myLabel"
 Example:

 code; -- myKeyword S 100 myLabel
 ...
 more code;
 -- myKeyword L myLabel
 -->

 <Expression Kind="BEGIN"
 Regex="#\s*pragma\s+myKeyword_MESSAGES_ON\s+(\w+)"
 Rules_Position="1"
 Is_Pragma="true"
 />
 <!-- Annotation declared with pragma instead of comment
 Example:#pragma myKeyword_MESSAGES_ON 100 -->

 <!-- Comment declaration with XML format-->

 <!-- XML_START must be declared before XML_CONTENT -->
 <Expression Kind="XML_START"
 Regex="<\s*myKeyword_COMMENT\s*>"

 />
 <!-- Example: <myKeyword_COMMENT> -->

 <Expression Kind="XML_CONTENT"
 Regex="<\s*(\d*)\s*>(((?![*]/)(?!<).)*)</\s*(\d*)\s*>"
 Rules_Position="1"
 Comment_Position="2"

 />
 <!-- Example: <100>This is my comment</100>

 Annotation Description Full XML Template

8-47

 XML_CONTENT must be declare on a single line.

 <100>This is my comment
 </100>
 is incorrect.
 -->

 <Expression Kind="XML_END"
 Regex="</\s*myKeyword_COMMENT\s*>"

 />
 <!-- Example: </myKeyword_COMMENT> -->
 </Expressions>

 <Mapping>

 <Acronym_Mapping Rule="100" Type="RTE" Acronym="ZDV"/>
 </Mapping>
</Annotations>

8 Reviewing Verification Results

8-48

Add Review Comments to Code

Note Starting R2017b, Polyspace uses a simpler annotation format. See “Justify Results Through
Code Annotations” on page 8-30 .

This example shows how to place review comments in your code for a particular result. If your code
comments follow a particular syntax, in a later verification on the same code, Polyspace can read the
comments. Using the comments, Polyspace automatically populates the Severity, Status and
Comment fields on the Results List pane. After you have placed your comments in your code, you or
another reviewer can avoid reviewing the same result twice.

In this section...
“Enter Code Comments in Specific Syntax” on page 8-49
“Copy Comment Syntax from Polyspace User Interface” on page 8-50

Enter Code Comments in Specific Syntax
You can manually enter comments in a specific syntax just before the line containing the result.

To comment:

• An individual line of code, use the following syntax:

-- polyspace<Type: RunTimeError1[,RunTimeError2[,…]] : [Severity] : [Status] >
 [Additional text]

• A section of code, use the following syntax:

-- polyspace:begin<Defect:Kind1[,Kind2] : [Severity] : [Status] >
[Additional text]

... Code section ...

-- polyspace:end<Type:Kind1[,Kind2] : [Severity] : [Status] >

The square brackets [] indicate optional information.

Replace Replace with
Type Runtime errors:

RTE
Global variables:
VARIABLE

Kind1,Kind2,... Runtime errors:

Acronyms for checks such as ZDV, OVFL, etc..

If you want the comment to apply to all checks on the following line,
specify ALL.

 Add Review Comments to Code

8-49

Replace Replace with
Global variables:
ALL. For global variables, the same comment syntax applies
irrespective of whether they are shared or used.

Severity Text that indicates the severity of the defect. Enter one of the
following:

• Unset
• High
• Medium
• Low

This text populates the Severity column on the Results List pane.
Status Text that indicates how you intend to correct the error in your code.

Enter one of the following or any other text:

• Unreviewed
• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

This text populates the Status column on the Results List pane.
Additional text Any text. This text populates the Comment column on the Results

List pane.

• “Syntax Example: Run-time Checks” on page 8-50
• “Syntax Example: Global Variables” on page 8-50

Syntax Example: Run-time Checks

• Non-terminating call:

-- polyspace<RTE: NTC : Low : No Action Planned > Known issue

• Division by zero:

-- polyspace<RTE: ZDV : High : Fix > Denominator cannot be zero

Syntax Example: Global Variables

-- polyspace<VARIABLE: ALL : Low : Justify with annotations> Known issue

Copy Comment Syntax from Polyspace User Interface
Instead of manually entering the comment in a specific syntax, you can copy the comment syntax
from the Polyspace user interface and paste in your code.

8 Reviewing Verification Results

8-50

1 On the Results List or Result Details pane, assign a Severity, Status and Comment to a
result.

a Select the result.
b Select options from the Severity and Status dropdown lists.
c In the Comment field, enter a comment that helps you recognize the result easily.

2 Copy the Severity, Status and Comment.

a On the Results List pane, right-click the result.
b Select Add Pre-Justification to Clipboard. The software copies the justification string to

the clipboard.
3 Paste the Severity, Status and Comment in your source code.

a On the Results List pane, right-click the result and select Open Editor.

Your source file opens on the Code Editor pane or an external text editor depending on your
Preferences. The current line is the line containing the result.

b Using the paste option in the text editor, paste the justification template string on the line
immediately before the line containing the result.

You can see your Severity, Status and Comment as a code comment in a format that
Polyspace can read later.

c Save your source file.
4 Run the verification again. Open your results.

On the Results List pane, the software populates the Severity, Status and Comment fields for
the result. You can either ignore these findings, or filter them from the Results List pane.

 Add Review Comments to Code

8-51

Filter and Group Results
This example shows how to filter and group results on the Results List pane. To organize your result
review, use filters and groups when you want to:

• Review certain types of checks in preference to others. For instance, you first want to address only
the Non-terminating loop checks.

• Review only new results found since the last verification.
• Not review checks you have already justified.

Typically, in your second or later rounds of review, you would have some checks already justified.
• Review only those checks that you have already assigned a certain status. For instance, you want

to review only those checks to which you have assigned the status, Investigate.
• Review all checks in the body of a particular file or function. Because of continuity of code,

reviewing these checks together can help you organize your review process.

You can also review the checks in one file alone if you have written the code for that file only and
not the entire set of source files used for verification.

Filter Results
You can filter results using graphs on the Dashboard pane or filters on the Results List pane.

Filter Using Dashboard

The Check Distribution graph on the Dashboard pane provides a graphical overview of the results,
divided by result color. You can select a color in the graph to view only checks of that color.

To clear filters from the Dashboard pane, select the link View all results in this scope. This action
clears all filters and displays the available results in the scope that you choose in the upper left menu
of the Results List toolbar.

Filter Using Results List

For all other filtering mechanisms, use filters on the Results List pane itself. To clear filters from the
Results List pane, use the button Clear active filters in the Showing dropdown.

• To filter results, on the Results List pane, select the icon on the desired column. Clear All.
Select the boxes for the results that you want displayed.

Item to Filter Column
Results in a certain file or function File or Function
Results with a certain severity or status Severity or Status
Results that you have justified. If you assign
the status Justified, No action planned
or Not a defect, a result is justified.

Justified

Checks only Family
Checks of a certain color Family

8 Reviewing Verification Results

8-52

Item to Filter Column
Global variables of a certain type Family
Code metrics Family

• To review only new results found since the last verification, on the Results List pane, select

.

Note You can also apply multiple filters. Once you apply a set of filters to your verification results,
they are preserved for subsequent verifications on the same project module. The Results List pane
shows the number of results filtered from display. If you place your cursor on the number, you can see
which filters have been applied.

Group Results

On the Results List pane, from the list, select an appropriate option.

• To view ungrouped results , select None.
• To view results grouped by result type, select Family.

The results are organized by type: checks, global variables, coding rule violations, code metrics.
Within each type, they are grouped further.

• The checks are grouped by color. Within each color, the checks are organized by check group.
For more information on the groups, see “Run-Time Checks”.

• The global variables are grouped by their usage. For more information, see “Global Variables”.
• To show results grouped by file, select File.

Within each file, the results are grouped by procedures in the file.
• To show results grouped by package, select Package.

Within each class, the results are grouped by method. The global variables are grouped under
_init_globals().

 Filter and Group Results

8-53

Prioritize Check Review
This example shows how to organize your review of orange checks.

1 Before beginning your check review, do the following:

• See the Code covered by verification graph on the Dashboard pane. See if the Procedure
and Code operation columns display a value closer to 100%. Otherwise, identify why
Polyspace could not cover the code.

For more information, see “Review Gray Checks” on page 8-20. If a substantial number of
functions or code operations were not covered, after identifying and fixing the cause, run
verification again.

• See if you have used the right configuration. With the results open, select Window > Show/
Hide View > Configuration.

Sometimes, especially if you are switching between multiple configurations, you can
accidentally use the wrong configuration for the verification.

2 From the drop-down list in the left of the Results List pane toolbar, select Critical checks.

This action retains only red, gray and critical orange checks.
3

Click the forward arrow to go to the first unreviewed check. Review this check.

For more information, see “Results Review Process”.

Continue to click the forward arrow until you have reviewed through all of the checks.
4 Before reviewing orange checks, review red and gray checks.
5 To check that you have addressed the red and critical orange checks, rerun the verification and

view your results.
6 If you do not have red or unjustified critical orange checks, from the drop-down list in the left of

the Results List pane toolbar, select All results.

Depending on the quality level you want, you can choose whether to review the noncritical
orange checks or not. For more information, see “Do I Have Too Many Orange Checks?” on page
9-7.

7 To see what percentage of checks you have justified:

a If you want the percentage broken down by color and type, on the Results List pane, from
the list, select Family. If you want the percentage broken down by file and function,
select File.

b View the entries in the Justified column.

8 Reviewing Verification Results

8-54

Generate Report
This example shows how to generate a report from your verification results. Using a customizable
template, the report presents your results in a concise manner for managerial review or other
purposes. To generate a verification report, do one of the following:

• Specify certain options before verification so that the software automatically generates a report.
• Generate a report from your verification results.

You can also export your results to a text file and generate graphs and statistics. See “Export Results
to Text File” on page 8-58.

Specify Report Generation Before Verification
User Interface Command Line
1 Select your project configuration. On the

Configuration pane, select Reporting.
Specify report generation options. For more
information, see “Reporting”.

2 Run verification and open your results.
3 Select Reporting > Open Report
4 Navigate to the Polyspace-Doc subfolder in

your results folder.

You can see the generated report in this
subfolder. Click OK to open the report.

Use the appropriate option with the polyspace-
ada command.

For more information on the options, see the
section Command-Line Information in
“Reporting”.

Additionally, you can also specify a report name
using the option -report-output-name.

 Generate Report

8-55

Generate Report After Verification
User Interface Command Line
1 Open your verification results.
2 Select Reporting > Run Report.

The Run Report dialog box opens.
3 Select the following options:

• In the Select Reports section, select the
report templates you want to use. For
example, you can select Developer and
Quality.

For more information, see Report
template.

• Select an Output folder in which to save
the reports.

• Select the Output format for the reports.
• If the display language (Windows) or

locale (Linux) of your operating system is
set to another language, you see an
option to generate English reports. Select
this option if you want an English report,
otherwise the report is in another
language.

• If you want to filter results from your
report, use filters on the Results List
pane to display only the results that you
want to report. Then, when generating
reports, select Only include currently
displayed results.

For more information on filtering, see
“Filter and Group Results” on page 8-52.

• If you perform a file by file verification,
you can generate a report of the
verification results for each file or for all
the files together. To generate a single
report, select the option Generate a
single report including all unit
results.

You can generate a single filtered report
for all units. The report uses the filters
applied to each unit and the review scope
(All results, Critical checks, etc.)
applied to the currently displayed unit.

4 Click Run Report.

Use the appropriate option with the polyspace-
report-generator command.

The available options are:

• -template path: Path to report template
file. For more information, see Report
template.

The predefined report templates are in
matlabroot\toolbox\polyspace
\psrptgen\templates\Developer.rpt.
Here, matlabroot is the MATLAB®

installation folder such as C:\Program
Files\MATLAB\R2015a.

• -format type: Output format of report. The
allowed types areHTML, PDF and WORD.

• -output-name filename: Name of report.
• -results-dir folder_paths: Path to

folder containing your verification results.

To generate a single report for multiple
verifications, specify folder_paths as
follows:

"folder1, folder2, ..., folderN"

where folder1, folder2, ... are paths
to the folders that contain verification results.
For example,

"C:\My_project\Module_1\results,
C:\My_project\Module_2\Results"

If you do not specify a folder path, the
software uses verification results from the
current folder.

• -set-language-english: Use this option to
generate English reports if the default report
is in another language. The display language
(Windows) or locale (Linux) of your operating
system determines the default language in the
report.

8 Reviewing Verification Results

8-56

User Interface Command Line
The software creates the specified reports
and opens them.

See Also

Related Examples
• “Customize Report Templates” on page 8-62

 Generate Report

8-57

Export Results to Text File
You can export your verification results to a tab delimited text file. Using the text file, you can:

• Generate graphs or statistics about your results that you cannot readily obtain from the user
interface by using MATLAB or Microsoft® Excel®. For instance, for each check type (Division by
zero, Overflow), you can calculate how many checks are red, orange, or green.

• Integrate the verification results with other checks you perform on your code.

Export Results
You can export results from the user interface or command line.

User Interface Command Line
1 Open your verification results.
2 Export all results or only a subset of the

results.

• To export all results, select Reporting >
Export > Export All Results.

• If you want to filter results from your
report, use filters on the Results List
pane to display only the results that you
want to report. Then, when exporting
results, select Reporting > Export >
Export Currently Displayed Results.

For more information on filtering, see
“Filter and Group Results” on page 8-52.

3 Select a location to save the text file and
click OK.

Use appropriate options with the polyspace-
report-generator command.

The available options are:

• -generate-results-list-file: Specifies
that a text file must be generated.

• -results-dir folder_paths: Path to
folder containing your verification results. If
you do not specify a folder path, the software
uses verification results from the current
folder.

To generate text files for multiple
verifications, specify folder_paths as
follows:

"folder1, folder2, ..., folderN"

folder1, folder2, ... are paths to the
folders that contain verification results. For
example:

"C:\My_project\Module_1\results,
C:\My_project\Module_2\Results"

To merge the text files, use the join function.

The exported text file uses the character encoding on your operating system. If special characters
from your comments are not exported correctly in the text file, change the character encoding on
your operating system before exporting.

View Exported Results
The text file contains the result information available on the Results List pane in the user interface
(except for line and column information). See “Results List” on page 8-6. Though you cannot identify
the location of a result in your source code using the text file, you can parse the file and generate
graphs or statistics about your results.

8 Reviewing Verification Results

8-58

The text file also contains a Key column. If the same file has the same result across multiple
verifications, it has the same entry in this column. When you merge multiple verification results that
might contain common files, use this entry to eliminate copies of a result. For instance, if you run
coding-rule checking on multiple modules and merge the results, header files and coding rule
violations in them appear in multiple module verification results. To eliminate copies of a coding rule
violation, use the entry in the Key column.

Generate Graphs from Results
This example shows how to generate a pie chart from the generated text file showing the distribution
of red, gray and orange run-time checks by check type. The text file has the name
Result_List.txt.

% Read contents of text file into a table
resultsList = readtable('Result_List.txt', 'Delimiter', '\t');

% Eliminate results that are not run-time checks, also eliminate green checks
matches = ismember(resultsList.Family, {'Run-time Check'}) & ...
 ~ismember(resultsList.Color, {'Green'});
checkList = resultsList(matches, :);

% Create a pie chart showing distribution of checks
pie(categorical(checkList.Check))

The key functions used in the example are:

• readtable: Create table (MATLAB) from file.
• pie: Create pie chart from a categorical array (MATLAB).

When you execute the script, you see a distribution of checks by check type.

 Export Results to Text File

8-59

Export Global Variable List
You can export the list of global variables in your code to a tab delimited text file. The text file or the
table contains the same information as the Variable Access pane in the Polyspace user interface.

Using the text file, you can:

• Generate graphs or statistics about global variables. For instance, you can see the percentage of
shared global variables that are not protected against concurrent access.

• Use the range information to create external constraints for global variables. For instance, you
can report that your code is free of certain run-time errors only for the extracted range of global
variables.

You can also use the range to specify external constraints on subsequent verifications or
verification of other modules. See “Specifying Constraints Using Text Files” on page 4-9.

Export Variable List to Text File
You can export results from the user interface or command line.

User Interface Command Line
1 Open your verification results.
2 Select Reporting > Export > Export

Variable Access.
3 Select a location to save the text file and

click OK.

Use appropriate options with the polyspace-
report-generator command.

The available options are:

• -generate-variable-access-file:
Specifies that a text file must be generated.

• -results-dir folder_paths: Path to
folder containing your verification results. If
you do not specify a folder path, the software
uses verification results from the current
folder.

To generate text files for multiple
verifications, specify folder_paths as
follows:

"folder1, folder2, ..., folderN"

folder1, folder2, ... are paths to the
folders that contain verification results. For
example:

"C:\My_project\Module_1\results,
C:\My_project\Module_2\Results"

8 Reviewing Verification Results

8-60

View Exported Variable List
The text file or the table contains the result information available on the Variable Access pane in the
user interface. See also “Variable Access” on page 8-11.

Some differences in presentation between the Variable Access pane and the text file are listed
below.

• The Access column in the text file indicates whether the row shows information about the variable
(Aggregate) or information about operations on the variable (Write or Read).

• The Function column in the text file shows the functions where the variable is read or written (
and on the Variable Access pane).

• There are no rows corresponding to read and write operations from tasks (and on the
Variable Access pane). This information is available in the Written by task and Read by task
columns.

• The colors on the Variable Access pane are represented through the columns Unreachable and
Protected:

• If a shared variable is accessed in multiple tasks without a common protection, it is colored
orange on the Variable Access pane. In the text file, the Protected column shows
Unprotected.

• If a shared variable is accessed in multiple tasks but with a common protection, it is colored
green on the Variable Access pane. In the text file, the Protected column shows Protected.

• If a shared variable is not accessed at all, it is colored gray on the Variable Access pane. In
the text file, the Unreachable column shows Is unreachable.

See Also

Related Examples
• “Variable Access” on page 8-11
• “Export Results to Text File” on page 8-58

 Export Global Variable List

8-61

Customize Report Templates
This example shows how to customize the templates that you use for report generation. To customize
the templates, you must have MATLAB Report Generator™ software installed on your system.

In this section...
“Create Custom Template” on page 8-62
“Apply Global Filters in Template” on page 8-62
“Override Global Filters” on page 8-63
“Use Custom Template” on page 8-64

Create Custom Template
If you have Simulink® Report Generator software on your system:

1 Open the Report Explorer from the MATLAB command prompt:

report
2 Select File > Open to open the template that you want to customize.
3 Navigate to Matlab_Install/toolbox/polyspace/psrptgen/templates where

Matlab_Install is the MATLAB installation folder. Use the matlabroot command to find the
folder location.

4 Modify the template using the options on the Report Options pane.
5 Save the modified template as a .rpt file.

Apply Global Filters in Template
1 In the Report Explorer, open the template that you want to customize. For instance,

Developer.rpt.
2 On the Name pane, under the Polyspace node, select Report Customization (Filtering).
3 Drag this component above the Title Page component that is located under the Report-

Developer.rpt node.

4 On the Report Customization (Filtering) pane in the right side of the Report Explorer, specify
your filters. For example:

8 Reviewing Verification Results

8-62

• To include Unreachable code checks, under Advanced filters, in the Check types to
include field, enter Unreachable code.

• To exclude Unreachable code checks, under Advanced filters, in the Check types to
include field, enter the regular expression ^(?!Unreachable code).*.

• To include the file main.c, under Advanced filters, in the Files to include field, enter
main.c.

• To exclude the file main.c, under Advanced filters, in the Files to include field, enter the
regular expression ^(?!main.c).*.

In each text box, specify one filter per line.

For more information, see “Regular Expressions” (MATLAB).

Override Global Filters
You can override some of the global filters using the Run-time Check Details Ordered by Color/
File component. For example, you can have a report chapter that contains NIV checks even though
NIV checks are excluded by the global filters.

1 Select the Run-time Check Details Ordered by Color/File component.

2 On the right of the dialog box, select the Override Global Report filter check box.
3 Specify your filters for this component. For example, in the Check types to include field, enter

NIV.
4 Save the template.

For more information on the components available for customizing a report template, see “Generate
Report”.

 Customize Report Templates

8-63

Use Custom Template
1 Open your results in the Polyspace interface.
2 Select Reporting > Run Report.
3 Click Browse.
4 Navigate to the location where you saved your template .rpt file.
5 Select the file and click OK. Under Select Reports, you see your template.
6 Select the template and click Run Report.

8 Reviewing Verification Results

8-64

Set Character Encoding Preferences
If the source files that you want to verify are created on an operating system that uses different
character encoding than your current system (for example, when viewing files containing Japanese
characters), you receive an error message when you view the source file or run certain macros.

The Character encoding option allows you to view source files created on an operating system that
uses different character encoding than your current system.

To set the character encoding for a source file:

1 Select Tools > Preferences.
2 In the Polyspace Preferences dialog box, select the Character encoding tab.

 Set Character Encoding Preferences

8-65

3 Select the character encoding used by the operating system on which the source file was created.
4 Click OK.

8 Reviewing Verification Results

8-66

5 Close and restart the Polyspace verification environment to use the new character encoding
settings.

 Set Character Encoding Preferences

8-67

Managing Orange Checks

• “What Is an Orange Check?” on page 9-2
• “Sources of Orange Checks” on page 9-5
• “Do I Have Too Many Orange Checks?” on page 9-7
• “Limit Display of Orange Checks” on page 9-8
• “Reduce Orange Checks” on page 9-10

9

What Is an Orange Check?
Orange checks indicate unproven code, which means the software cannot prove that the code:

• Produces a run-time error
• Does not produce a run-time error

Polyspace verification attempts to prove the absence or existence of run-time errors. Therefore, the
software considers all code unproven before a verification. During a verification, the software
attempts to prove that the code is:

• Without run-time errors (green)
• Certain to fail (red)
• Unreachable (gray)

Code that is not assigned one of these categories (colors) stays unproven (orange).

Code often remains unproven in situations where some paths fail while others succeed. For example,
consider the following instruction:

X = 1 / (X - Y);

Does a division-by-zero error occur?

The answer depends on the values of X and Y . However, there are an almost infinite number of
possible values. Creating test cases for all possible values is not practical.

Because it is not possible to test every value for each variable, the target computer and programming
language provide limits on the possible values of the variables. Polyspace verification uses these
limits to compute a cloud of points (upper-bounded convex polyhedron) that contains all possible
states for the variables.

9 Managing Orange Checks

9-2

Polyspace verification then compares the data set represented by this polyhedron to the error zone. If
the two data sets intersect, the check is orange.

Graphical Representation of an Orange Check

A true orange check represents a situation where some paths fail while others succeed. However,
because the data set in the verification is an approximation of actual values, an orange check may
actually represent a check of another color.

 What Is an Orange Check?

9-3

Polyspace reports an orange check when the two data sets intersect, regardless of the actual values.
Therefore, you may find orange checks that represent bugs, while other orange checks represent
code that does not have run-time errors.

You can resolve some of these orange checks by increasing the precision of your verification, or by
adding execution context, but often you must review the results to determine the source of an orange
check.

9 Managing Orange Checks

9-4

Sources of Orange Checks
Orange checks can be separated into two categories:

In this section...
“Orange Checks from Code” on page 9-5
“Orange Checks from Verification Limitations” on page 9-5

Orange Checks from Code
Potential Bug

An orange check can reveal code which will fail under some circumstances. These types of orange
checks often represent real bugs.

For example, consider a function Recursion():

• Recursion() takes a parameter, increments it, then divides by it.
• This sequence of actions loops through an indirect recursive call to Recursion_recurse().

If the initial value passed to Recursion() is negative, then the recursive loop will at some point
attempt a division by zero. Therefore, the division operation causes an orange Division by Zero.

Data Set Issue

An orange check can result from a theoretical set of data that cannot actually occur.

Polyspace verification uses an upper approximation of the data set, meaning that it considers many
combinations of input data rather than a particular combination. Therefore, an orange check may
result from a combination of input values that is not possible at execution time.

For example, consider three variables X, Y, and Z:

• Each of these variables is defined as being between 1 and 1,000.
• The code computes X*Y*Z on a 16-bit data type.
• The result can potentially overflow, so it causes an orange OVFL.

When developing the code, you might know that the three variables cannot take the value 1,000 at
the same time, but this information is not available to the verification. Therefore, the multiplication is
orange.

When an orange check is caused by a data set issue, you can usually identify the cause quickly. After
identifying a data set issue, you might want to comment the code to flag the warning, or modify the
code to take the constraints into account.

Orange Checks from Verification Limitations
Inconclusive Verification

An orange check can be caused by situations in which the verification is unable to conclude whether
a problem exists.

 Sources of Orange Checks

9-5

In some code, it is impossible to conclude whether an error exists without additional information.

For example, consider a variable X, and two concurrent tasks T1 and T2.

• X is initialized to 0.
• T1 assigns the value 12 to X.
• T2 divides a local variable by X.
• A division by zero error is possible because T1 can be started before or after T2, so the division

causes an orange ZDV.

Unless you define the call sequence, the verification cannot determine if an error will occur.

Most inconclusive orange checks take some time to investigate. An inconclusive orange check often
results from complex code structure. Sometimes, such situations take an hour or more to understand.
Depending on the criticality of the function and the required speed of execution, you may might want
to rewrite the code to remove risk of failure.

Basic Imprecision

An orange check can be caused by imprecise approximation of the data set used for verification.

For example, consider a variable X:

• Before the function call, X is defined as having the following values: -5, -3, 8, or a value in the
range [10...20]. 0 has been excluded from the set of possible values for X.

• However, due to optimization at low precision levels (-O0), the verification approximates X in the
range [-5...20], instead of the previous set of values.

• Therefore, calling the function x = 1/x causes an orange ZDV.

Polyspace verification is unable to prove the absence of a run-time error in this case.

In cases of basic imprecision, you might be able to resolve orange checks by increasing the precision
level. If increasing the precision level does not resolve the orange check, verification cannot help
directly. You must review the code to determine the problem.

For more information, see “Polyspace Software Assumptions”.

9 Managing Orange Checks

9-6

Do I Have Too Many Orange Checks?
If the goal of code verification is to prove the absence of run-time errors, you might be concerned by
the number of orange checks in your results.

However, the presence of multiple orange checks need not be a cause for concern. The minimum
number that you want depends on several factors:

• Development Stage – When verifying the first version of a software component, focus exclusively
on resolving red checks. As development progresses, start considering the orange checks more
and more.

• Application Requirements – Sometimes, to write provable code, you can compromise with
properties such as code size, speed, and portability. Depending on the requirements of your
application, you might optimize one or more of these properties at the expense of more orange
checks.

• Quality Goals – Using Polyspace software, you can meet your quality goals. Therefore, before you
verify code, you must define quality goals for your application. These goals should be based on the
criticality of the application, as well as time and cost constraints. Based on your quality goals, you
can choose to retain a specific minimum number of orange checks in your application.

It is these factors that ultimately determine how many orange checks are acceptable in your results,
and what you must do with the orange checks that remain.

 Do I Have Too Many Orange Checks?

9-7

Limit Display of Orange Checks
This example shows how to control the number and type of orange checks displayed on the Results
List pane using the dropdown menu on the upper left. To reduce your review effort, you can do one of
the following:

• Display only the critical orange checks.

Use the option Show > Critical checks on the Results List pane.
• Limit the number or suppress orange checks for certain check types, using additional options on

the Show menu.

You can create your own options. You can share the option files to help developers in your
organization review at least a certain number or percentage of orange checks.

1 Select Tools > Preferences.
2 On the Review Scope tab, select New. Save your option file.
3 On the left pane, select Run-time Check. On the right pane, to suppress a check completely

from display, clear the box next to the check. To suppress a check partly, specify a percentage
less than 100 to display.

To select all checks belonging to a category such as Numerical, select the box next to the
category name. For more information on the categories, see “Run-Time Checks”. If only a fraction
of checks in a category are selected, the check box next to the category name displays a
symbol.

Instead of a percentage, you can specify a number or the string ALL. To specify a number, clear
the box Specify percentage of checks.

9 Managing Orange Checks

9-8

4 Select Apply or OK.

On the Results List pane, the menu in the left of the toolbar displays the additional options.
5 Select the option corresponding to the limits that you want. Only the number or percentage of

orange checks that you specify remain on the Results List pane.

• If you specify an absolute number, Polyspace displays that number of orange checks.
• If you specify a percentage, Polyspace displays green and justified orange checks until they

make up the percentage. If they do not make up the percentage, the software then displays
unjustified orange checks.

You can use a review scope with percentage specifications to ensure that you justify at least a
certain percentage of checks.

 Limit Display of Orange Checks

9-9

Reduce Orange Checks
An orange check indicates that Polyspace detects a possible run-time error but cannot prove it. To
help Polyspace produce more proven results, you can:

• Follow good coding practices.
• Specify the necessary verification options.

You can also limit the number and family of orange checks displayed on Results List. For more
information, see “Limit Display of Orange Checks” on page 9-8.

In this section...
“Improve Verification Precision” on page 9-10
“Apply Coding Guidelines” on page 9-11
“Stub Parts of the Code Manually” on page 9-11
“Specify Multitasking Behavior” on page 9-14

Improve Verification Precision
Improving the precision of a verification can reduce the number of orange checks in your results.

There are a number of Polyspace options that can improve the precision of the verification. The
compromise for this improved precision is increased verification time.

The following sections describe how to improve the precision of your verification:

• “Set the Analysis Precision Level” on page 9-10
• “Set Software Safety Analysis Level” on page 9-10

Set the Analysis Precision Level

The precision level specifies the mathematical algorithm used to compute the cloud of points
(polyhedron) containing many possible states for the variables. Changing the precision level does not
improve the quality of your code. However, orange checks caused by low precision can become green
when verified with higher precision. The default precision level is 2. To set the precision level:

1 In the Polyspace user interface, on the Configuration pane, select Precision.
2 From the Precision Level drop-down list, select 0, 1, 2, or 3.

For more information, see Precision level.

Set Software Safety Analysis Level

The verification level specifies how many times the abstract interpretation algorithm passes through
your code. Each pass results in a deeper level of propagation of calling and called context. The
deeper the verification goes, the more precise it is. By default, verification proceeds to Software
Safety Analysis Level 4. To set the verification level:

1 In the Polyspace user interface, on the Configuration pane, select Precision.
2 From the Verification level drop-down list, select the level that you want.

9 Managing Orange Checks

9-10

For more information, see Verification level.

Apply Coding Guidelines
The number of orange checks per file depends on the coding style used in the project.

The following coding guidelines improve Polyspace precision and selectivity in Ada code verification:

• Use constrained types. Use subtype and not standard type.
• Do not use "use at" clause.
• Minimize the use of big and complex types (record of record, array of record, etc.).
• Minimize the use of volatile variables.
• Minimize the use of assembler code.
• Do not mix assembly code and Ada. Gather assembly code in a procedure or function which can be

automatically stubbed.

Stub Parts of the Code Manually
Manually stubbing parts of your code can reduce the number of orange checks in your results.
Manual stubbing does not improve the quality of your code, but only changes the results.

Stubs do not need to model the details of the functions or procedures involved. They only need to
represent how the code interacts with the remainder of the system.

If a function is supposed to return an integer, the default automatic stubbing will stub it on the
assumption that it can take a value from the full range of an integer.

The following sections describe how to reduce orange checks using manual stubbing:

• “Manual vs. Automatic Stubbing” on page 9-11
• “Emulating Function Behavior with Manual Stubs” on page 9-12
• “Reducing Orange Checks with Empty Stubs” on page 9-13
• “Applying Constraints to Variables Using Stubs” on page 9-13

Manual vs. Automatic Stubbing

There are two types of stubs in Polyspace verification:

• Automatic stubs – The software automatically creates stubs for unknown functions based on the
function prototype (the function declaration). Automatic stubs do not provide insight into the
behavior of the function, but are very conservative, ensuring that the function does not cause a
run-time error.

• Manual stubs – You create these stub functions to emulate the behavior of the missing functions,
and manually include them in the verification with the rest of the source code. Manual stubs can
better emulate missing functions, or they can be empty.

By default, Polyspace software automatically stubs functions. However, because automatic stubs are
conservative, they can lead to more orange checks in your results.

 Reduce Orange Checks

9-11

Example 9.1. Stubbing Example

procedure a_missing_function
(dest: in out integer,
src : in integer);
procedure test is
a: integer;
b: integer;
begin
a: = 1;
b: = 0;
a_missing_function(a,b);
b:= 1/a;
end;

Due to automatic stubbing, the verification assumes that a can be have take a value from the full
range of integers, including 0. This assumption produces an orange check on the division.

If you provide an empty manual stub for the function, the division is green. This action reduces the
number of orange checks in the result, but does not improve the quality of the code itself. The
function could still potentially cause an error.

You can also provide a detailed manual stub that emulates the behavior of the function.

Emulating Function Behavior with Manual Stubs

You can improve both the speed and selectivity of your verification by providing manual stubs that
emulate the behavior of missing functions. The trade-off is time spent writing the stubs.

Manual stubs do not need to model the details of the functions or procedures involved. They only
need to represent how the code interacts with the remainder of the system.

Example 9.2. Example

This example shows a header for a missing function (which may occur when the verified code is an
incomplete subset of a project).

procedure a_missing_function
 (dest: in out integer,
 src : in integer);

Applying fine-level modeling of constraints in primitives and outside functions at the application
periphery propagates more precision throughout the application, which results in a higher selectivity
rate (more proven colors, i.e. more red+ green + gray). For this function, you could add a simple
body:

procedure a_missing_function
 (dest: in out integer,
 src : in integer)
begin
 dest := src;
end;

In this case, instead of considering the full range for the dest parameter, Polyspace considers the
relation between input parameter src and the output parameter, propagating more precision
throughout the application.

9 Managing Orange Checks

9-12

Reducing Orange Checks with Empty Stubs

Providing empty manual stubs can reduce the number of orange checks in your results.

For example, consider the following code:

package automatic_vs_manual_stub is

 procedure write_or_not1(x : in out Integer);
 procedure write_or_not2(x : in out Integer);
 procedure green;
 procedure orange;

end;

package body automatic_vs_manual_stub is

 procedure write_or_not2(x : in out Integer) is
 begin
 null;
 end;

 procedure orange is
 x : Integer;
 y : Integer;
 begin
 x := 12;
 y := 1;
 write_or_not1(x);
 y := y/x; -- Orange ZDV due to automatic stub
 end;

 procedure green is
 x : Integer;
 y : Integer;
 begin
 x := 12;
 y := 1;
 write_or_not2(x);
 y := y/x; -- Green due to empty stub
 end;

end;

The code for the two functions is identical, but the automatic stub produces an orange check, while
the empty stub produces a green.

While the empty stub reduces the number of orange checks in your results, you must take additional
steps to ensure that the actual function does not result in a run-time error.

Applying Constraints to Variables Using Stubs

Another way to increase the selectivity is to indicate to the Polyspace software that some variables
may lie within smaller functional ranges instead of the full range of the considered type.

This smaller function range primarily concerns two items from the language:

 Reduce Orange Checks

9-13

• Parameters passed to functions.
• Variables' content, mostly globals, which might change from one execution to another. Typically,

these might include things like calibration data or mission specific data. These variables might be
read directly within the code, or read through an API of functions.

Reduce the cloud of points

If a function is supposed to return an integer, the default automatic stubbing stubs it on the
assumption that it can potentially take a value from the full range of an integer.

Polyspace models data ranges throughout the code it verifies. It produces more precise, informative
results provided that the data it considers from the “outside world” is representative of the data that
can be expected when the code is implemented. There is a certain number of mechanisms available to
model such a data range within the code itself, and there are three possible approaches.

with volatile and assert with assert and without volatile without assert, without volatile,
without "if"

function stub return INTEGER is
tmp: INTEGER;
random: INTEGER;
pragma volatile (random);
begin
tmp:= random;
pragma assert (tmp>=1);
pragma assert (tmp<=10);
return tmp;
end;

function random return INTEGER;
pragma Interface (C, random);
function stub return INTEGER is
tmp: INTEGER;
begin
tmp:= random;
pragma assert (tmp>=1);
pragma assert (tmp<=10);
return tmp;
end;

function random return INTEGER;
pragma Interface (C, random);
function stub return INTEGER is
tmp: INTEGER;
begin
tmp:= random;
while (tmp<1 or tmp>10)
loop
tmp:=random;
end loop;
return tmp;
end;

The three approaches are equivalent (except, perhaps, that the assertions in the first two usually
generate orange checks).

Specify Multitasking Behavior
The asynchronous characteristics of your application can have a direct impact on the number of
orange checks. Properly describing characteristics such as implicit task declarations, mutual
exclusion, and critical sections can reduce the number of orange checks in your results.

For example, consider a variable X, and two concurrent tasks T1 and T2.

• X is initialized to 0.
• T1 assigns the value T2 to X.
• T2 divides a local variable by X.
• A division by zero error is possible because T1 can be started before or after T2, so the division

causes an orange Division by Zero error.

The verification cannot determine if an error will occur without knowing the call sequence. Modeling
the task differently could turn this orange check green or red.

For more information, see “Modelling Synchronous Tasks” on page 5-9.

9 Managing Orange Checks

9-14

Software Quality with Polyspace Metrics

• “Software Quality with Polyspace Metrics” on page 10-2
• “Setting Up Verification to Generate Metrics” on page 10-3
• “View Polyspace Metrics Project Index” on page 10-8
• “Organize Polyspace Metrics Projects” on page 10-9
• “Protect Access to Project Metrics” on page 10-11
• “Monitor Verification Progress” on page 10-12
• “Web Browser Support” on page 10-13
• “Review Overall Progress” on page 10-14
• “Displaying Metrics for Single Project Version” on page 10-17
• “Creating File Module and Specifying Quality Level” on page 10-18
• “Compare Project Versions” on page 10-19
• “Review New Findings” on page 10-20
• “Review Run-Time Checks” on page 10-21
• “Fix Defects” on page 10-23
• “Review Code Metrics” on page 10-24
• “Customizing Software Quality Objectives” on page 10-25
• “Tips for Administering Results Repository” on page 10-30

10

Software Quality with Polyspace Metrics
Polyspace Metrics is a Web-based tool for software development managers, quality assurance
engineers, and software developers, to do the following in software projects:

• Evaluate software quality metrics
• Monitor the variation of code metrics and run-time checks through the lifecycle of a project
• View defect numbers, run-time reliability of the software, review progress, and the status of the

code with respect to software quality objectives.

If you are a development manager or a quality assurance engineer, through a Web browser, you can:

• View software quality information about your project. See “View Polyspace Metrics Project Index”
on page 10-8.

• Observe trends over time, by project or module. See “Review Overall Progress” on page 10-14.
• Compare metrics of one project version with those of another. See “Compare Project Versions” on

page 10-19.

If you have the Polyspace product installed on your computer, you can drill down to run-time checks
in the Polyspace verification environment. This feature allows you to review run-time checks and, if
required, classify these checks as defects. In addition, if you think that run-time checks can be
justified, you can mark them as justified and enter relevant comments. See “Review Run-Time
Checks” on page 10-21.

If you are a software developer, Polyspace Metrics allows you to focus on the latest version of the
project that you are working on. You can use the view filters and drill-down functionality to go to code
defects, which you can then fix. See “Fix Defects” on page 10-23.

Polyspace calculates metrics that are used to determine whether your code fulfills predefined
software quality objectives. You can redefine these software quality objectives. See “Customizing
Software Quality Objectives” on page 10-25.

10 Software Quality with Polyspace Metrics

10-2

Setting Up Verification to Generate Metrics
You can run, either manually or automatically, verifications that generate metrics. In each case, the
Polyspace product uses a metrics computation engine to evaluate metrics for your code, and stores
these metrics in a results repository.

Before you run a verification manually, in the Polyspace user interface:

1 On the Configuration pane, select Machine Configuration.
2 Select the Send to Polyspace Server check box.
3 Select the Add to results repository check box.

To set up scheduled, automatic verification runs, see “Specifying Automatic Verification” on page 10-
3.

The software saves generated metrics in the following XML file:

Results_Folder/Polyspace-Doc/Code_Metrics.xml

Specifying Automatic Verification
You can configure verifications to start automatically and periodically, for example, at a specific time
every night. At the end of each verification, the software stores results in the repository and updates
the project metrics. You can also configure the software to send you an email at the end of the
verification. This email will contain:

• Links to results
• An attached log file if the verification produces compilation errors
• A summary of new findings, for example, new potential and actual run-time errors

To configure automatic verification, you must create an XML file Projects.psproj that has the
following elements:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Polyspace Metrics Automatic Verification Project File -->
<Configuration>
 <Project>
 <Options>
 </Options>
 <LaunchingPeriod>
 </LaunchingPeriod>
 <Commands>
 </Commands>
 <Users>
 <User>
 </User>
 </Users>
 </Project>
 <SmtpConfiguration>
 </SmtpConfiguration>
</Configuration>

Configure the verification by providing data for the elements (and their attributes) within
Configuration. See “Element and Attribute Data for Projects.psproj” on page 10-4.

 Setting Up Verification to Generate Metrics

10-3

After creating Projects.psproj, place the file in the following folder on the Polyspace Queue
Manager server:

/var/Polyspace/results-repository

Note If the flag process_automation in your configuration file polyspace.conf is set to yes,
then, when you start your Polyspace Queue Manager server, Polyspace generates two template files
in the results repository folder:

• ProcessAutomationWindowsTemplate.psproj for Windows
• ProcessAutomationLinuxTemplate.psproj for Linux

Use the relevant template to create your Projects.psproj file.

For more information about the configuration file polyspace.conf, see “Manual Configuration of
the Polyspace Server”.

Element and Attribute Data for Projects.psproj
Project

Specify three attributes:

• name — Your project name.
• language — ADA or ADA95.
• verificationKind — Mode, which is either INTEGRATION or UNIT-BY-UNIT.

For example,
<Project name="Demo_Ada" language="Ada" verificationKind="INTEGRATION">

The Project element also contains the following elements:

• “Options” on page 10-4
• “LaunchingPeriod” on page 10-5
• “Commands” on page 10-5
• “Users” on page 10-6

Options

Specify a list of Polyspace options required for your verification, with the exception of –unit-by-
unit, –results-dir, –prog and –verif-version. If these four options are present, they are
ignored.

The following is an example.
 <Options>
 -O2
 -to pass2
 -target sparc
 -temporal-exclusions-file sources/temporal_exclusions.txt
 -entry-points tregulate,proc1,proc2,server1,server2
 -critical-section-begin Begin_CS:CS1
 -critical-section-end End_CS:CS1
 </Options>

10 Software Quality with Polyspace Metrics

10-4

LaunchingPeriod

For the starting time of the verification, specify five attributes:

• hour. Integer in the range 0–23.
• minute. Integer in the range 0–59.
• month. Integer in the range 1–12.
• day. Integer in the range 1–31.
• weekDay. Integer in the range 1–7, where 1 specifies Monday.

Use * to specify all values in range, for example, month="*" specifies a verification every month.

Use - to specify a range, for example, weekDay="1-5" specifies Monday to Friday.

You can also specify a list for each attribute. For example, day="1,15" specifies the first and the
fifteenth day of the month.

Default: If you do not specify attribute data for LaunchingPeriod, then a verification is started
each week day at midnight.

The following is an example.
<LaunchingPeriod hour="12" minute="20" month="*" weekDay="1-5">

Commands

You can provide a list of optional commands. There must be only one command per line, and these
commands must be executable on the computer that starts the verification.

• GetSource. A command to retrieve source files from the configuration management system, or
the file system of the user. Executed in a temporary folder on the client computer, which is also
used to store results from the compilation phase of the verification. This temporary folder is
removed after the verification is spooled to the Polyspace server.

For example:
<GetSource>
 cvs co -r 1.4.6.4 myProject
 mkdir sources
 cp -fvr myProject/*.adb sources
</GetSource>

You can also use:
<GetSource>
 find /……/myProject -name "*.adb" | tee sources_list.txt
</GetSource>

and add -sources-list-file sources_list.txt to the options list.
• GetVersion. A command to retrieve the version identifier of your project. Polyspace uses the

version identifier as a parameter for -verif-version.

For example:
<GetVersion>
 cd /…../myProject ; cvs status Makefile 2>/dev/null | grep 'Sticky Tag:'
 | sed 's/Sticky Tag://' | awk '{print $1"-"$3}'| sed 's/).*$//'
</GetVersion>

 Setting Up Verification to Generate Metrics

10-5

Users

A list of users, where each user is defined using the element “User” on page 10-6.

User

Define a user using three elements:

• FirstName. First name of user.
• LastName. Last name of user.
• Mail. Use the attributes resultsMail and compilationFailureMail to specify conditions for

sending an email at the end of verification. Specify the email address in the element.

• resultsMail. You can use one of the following values:

• ALWAYS. Default. Email sent at the end of each automatic verification (even if the
verification does not produce new run-time checks).

• NEW-CERTAIN-FINDINGS. Email sent only if verification produces new red, gray, NTC, or
NTL checks.

• NEW-POTENTIAL-FINDINGS. Email sent only if verification produces new orange check.
• ALL-NEW-FINDINGS. Email sent if verification produces a new run-time check.

• compilationFailureMail. Either Yes (default) or No. If Yes, email sent when automatic
verification fails because of a compilation failure.

The following is an example of Mail.
<Mail resultsMail="NEW-POTENTIAL-FINDINGS"
compilationFailureMail="yes">
 user_id@yourcompany.com
</Mail>

SmtpConfiguration

This element is mandatory for sending email, and you must specify the following attributes:

• server. Your Simple Mail Transport Protocol (SMTP) server.
• port. SMTP server port. Optional, default is 25.

For example:
<SmtpConfiguration server="smtp.yourcompany.com" port="25">

Example of Projects.psproj

The following is an example of Projects.psproj:
<?xml version="1.0" encoding="UTF-8" ?>
<!-- Polyspace Metrics Automatic Verification Project File -->
<Configuration>
<Project name="Demo_Ada" language="ADA" verificationKind="INTEGRATION">
 <Options>
 -O2
 -to pass2
 -target sparc
 -temporal-exclusions-file sources/temporal_exclusions.txt
 -entry-points tregulate,proc1,proc2,server1,server2
 -critical-section-begin Begin_CS:CS1
 -critical-section-end End_CS:CS1
 </Options>

10 Software Quality with Polyspace Metrics

10-6

 <LaunchingPeriod hour="12" minute="20" month="*" weekDay="1-5">
 </LaunchingPeriod>
 <Commands>
 <GetSource>
 /bin/cp -vr /yourcompany/home/auser/tempfolder/Demo_Ada_Studio/sources/ .
 </GetSource>
 <GetVersion>
 </GetVersion>
 </Commands>
 <Users>
 <User>
 <FirstName>Polyspace</FirstName>
 <LastName>User</LastName>
 <Mail resultsMail="ALWAYS"
 compilationFailureMail="yes">userid@yourcompany.com
 </Mail>
 </User>
 </Users>
</Project>
<SmtpConfiguration server="smtp.yourcompany.com" port="25">
</SmtpConfiguration>
</Configuration>

 Setting Up Verification to Generate Metrics

10-7

View Polyspace Metrics Project Index
1 In the address bar of your Web browser, enter the following URL:

protocol:// ServerName: PortNumber

• protocol is either http (default) or https.

• ServerName is the name or IP address of the server that is your Polyspace Queue Manager.
• PortNumber is the Web server port number (default 8080)

To use HTTPS, you must set up the configuration file and the Metrics configuration
preferences. For more information, see “Configure Web Server for HTTPS”.

2 Select the Projects tab.

You can save the project index page as a bookmark for future use. You can also save as bookmarks
Polyspace Metrics pages that you subsequently navigate to.

To refresh the page, click .

At the top of each column, use the filters to shorten the list of displayed projects. For example:

• In the Project filter, if you enter demo_, the browser displays a list of projects with names that
begin with demo_.

• From the drop-down list for the Language filter, if you select Ada, the browser displays only Ada
projects.

If a new verification has been carried out for a project since your last visit to the project index page,
then the icon appears before the name of the project.

If you place your cursor anywhere on a project row, in a box on the left of the window, you see the
following project information:

• Language — For example, Ada, C, C++.
• Mode — Either Integration or Unit by Unit.
• Last Run Name — Identifier for last verification performed.
• Number of Runs — Number of verifications performed in project.

In a project row, click anywhere to go to the Summary view for that project.

10 Software Quality with Polyspace Metrics

10-8

Organize Polyspace Metrics Projects
The Polyspace Metrics project index allows you to display projects as categories, a useful feature
when you have a large number of projects to manage. You can:

• Create multiple-level project categories.
• Move projects between categories by dragging and dropping projects.
• Rename and remove categories. When you remove a category, the software does not delete the

projects within the category but moves the projects back to the parent or root level.

To create a root-level project category:

1 On the Polyspace Metrics project index, right-click a project.
2 From the context menu, select Create Project Category. The Add To Category dialog box opens.
3 In Enter the name of the project category field, enter the required name, for example,

MyNewCategory. Then click OK.
4 To add projects to this new category, drag and drop the required projects into this category.

To create a subroot-level category:

1 Right-click a project category.
2 From the context menu, select Create Project Category. The Add To Category dialog box opens.
3 In Enter the name of the project category field, enter the required name, for example,

SubCategory1. If you decide that you do not want a subroot category, but want a new root
category instead, select the Create a root project category check box. Then click OK.

4 To add projects to this new category, drag and drop the required projects into this category.

To rename a project category:

1 Right-click the project category.
2 From the context menu, select Rename Project Category. The category name becomes

editable.
3 Enter the new name for your category. Press Return.
4 A message dialog box opens requesting confirmation. Click OK. The software updates the

category name.

To remove a project category:

1 Right-click the project category.
2 From the context menu, select Delete Project Category. If the project category is a:

• Root-level project category, the software moves all projects in the category to the root level
and removes the project category and associated subroot categories.

• Subroot-level category, the software moves all projects within the subroot category to the
parent level and removes the subroot category.

Note The software does not delete projects when removing project categories.

You can move projects back to the root level from project categories without removing the project
categories:

 Organize Polyspace Metrics Projects

10-9

1 From within project categories, select the projects that you want to move to the root level.
2 Right-click the selected projects. From the context menu, select Move to Root. The software

moves the projects back to the root level.

10 Software Quality with Polyspace Metrics

10-10

Protect Access to Project Metrics
You can restrict access to the metrics for a project by specifying a password:

• When you run a verification with Polyspace Metrics enabled or upload results to Polyspace
Metrics:

1 The Authentication Required dialog box opens.

2 In the Project password and Confirm password fields, enter your password.
3 Click OK.

• After the creation of a project:

1 From the Polyspace Metrics project index, right-click the project.
2 From the context menu, select Change/Set Password. The Change Project Password dialog

box opens.

3 In the New password and Confirm new password fields, enter your password.
4 Click OK. The software displays the password-restricted icon next to the project.

From the command line, you can use the -password option. For example:
polyspace-results-repository.exe -prog psdemo_model_link_sl -password my_passwd

Note The password for a Polyspace Metrics project is encrypted. The Web data transfer is not
encrypted. The password feature minimizes unintentional data corruption, but it does not provide
data security. However, data transfers between the Polyspace Client and Polyspace Server are
encrypted. To use a secure Web data transfer with HTTPS, see “Configure Web Server for HTTPS”.

After you enter your password, the project pages are accessible for a session that lasts 30 minutes.
Access is available for this period of time, even if you close your Web browser. If you return to the

Polyspace Metrics project index, the session ends. If you click during a session, the project
pages are accessible for another 30 minutes.

 Protect Access to Project Metrics

10-11

Monitor Verification Progress
In the Summary > Verification Status column, Polyspace Metrics provides status information for
each verification in the project. The status can be queued, running, or completed.

If the verification mode is Unit By Unit, the software provides status information in each unit row.
If the verification mode is Integration, the software provides status information in the parent row
only.

If the verification status is running (and you have installed the Polyspace product on your
computer), you can monitor progress of the verification with the Polyspace Job Monitor.

To open the Progress Monitor of the Polyspace Job Monitor:

1 In the Summary > Verification Status column, right-click the parent or unit cell with the status
running.

2 From the context menu, select Follow Progress.

The Output Summary tab opens in the Polyspace verification environment.

10 Software Quality with Polyspace Metrics

10-12

Web Browser Support
Polyspace Metrics supports the following Web browsers:

• Internet Explorer® 7.0, or later
• Firefox® version 3.6, or later
• Google® Chrome version 12.0, or later

To use Polyspace Metrics, you must install on your computer Java, version 1.4 or later.

For the Firefox Web browser, you must manually install the required Java plug-in. For example, if your
computer uses the Linux operating system:

1 Create a Firefox folder for plug-ins:
mkdir ~/.mozilla/plugins

2 Go to this folder:
cd ~/.mozilla/plugins

3 Create a symbolic link to the Java plug-in, which is available in the Java Runtime Environment
folder of your Polyspace installation:
ln -s Polyspace_Install/jre/lib/amd64/libnpjp2.so

 Web Browser Support

10-13

Review Overall Progress
For a development manager or quality assurance engineer, the Polyspace Metrics Summary view
provides useful high-level information, including quality trends, over the course of a project.

To obtain the Summary view for a project:

1 Open the Polyspace Metrics project index. See “View Polyspace Metrics Project Index” on page
10-8.

2 Click anywhere in the row that contains your project. You see the Summary view.

At the top of the Summary view, use the From and To filters to specify the project versions that you
want to examine. By default, the From and To fields specify the earliest and latest project versions
respectively.

In addition, by default, the Quality Objectives filter is OFF, and the Display Mode is Review/
Justification Progress (%).

Below the filters, you see:

• Plots that reveal how the number of verified files, lines of code, defects, and run-time selectivity
vary over the different versions of your project

• A table containing summary information about your project versions

If you have projects with two or more file modules in the Polyspace verification environment, by
default, Polyspace Metrics displays verification results using the same module structure. However,
Polyspace Metrics also allows you to create or delete file modules. See “Creating File Module and
Specifying Quality Level” on page 10-18.

With the default filter settings, you can monitor progress in terms of run-time checks that quality
assurance engineers or developers have reviewed.

You can also monitor progress in terms of software quality objectives. You may, for example, want to
find out whether the latest version fulfills quality objectives.

To display software quality information, from the Quality Objectives drop-down list, select ON .

10 Software Quality with Polyspace Metrics

10-14

Under Software Quality Objectives, look at Review Progress for the latest version (CC-
R2011bMain-S10 (2)), which, in this example, indicates that the review of verification results is
incomplete (3.4 % reviewed). You also see that the Overall Status is FAIL. This status indicates that,
although the review is incomplete, the project code fails to meet software quality objectives for the
quality level MW-QO-3. With this information, you may conclude that you cannot release version CC-
R2011bMain-S10 (2) to your customers.

When Polyspace Metrics adds the results for a new project version to the repository, Polyspace
Metrics also imports comments from the previous version. For this reason, you rarely see the review
progress metric at 0% after verification of the first project version.

Note You may want to find out whether your code fulfills software quality objectives at another
quality level, for example, MW-Q0-1. Under Software Quality Objectives, in the Level cell, select
MW-Q0-1 from the drop-down list.

There are seven quality levels, which are based on predefined software quality objectives. You can
customize these software quality objectives and modify the way quality is evaluated. See
“Customizing Software Quality Objectives” on page 10-25.

To investigate further, under Run-Time Errors, in the Run-Time Reliability cell, you click the link
87.6%. This action takes you to the Run-Time Checks view, where you see an expanded view of
check information for each file in the project.

To view a check in the Polyspace verification environment, in the relevant cell, click the numeric
value for the check. The Polyspace verification environment opens in the Polyspace user interface
displaying verification information for this check.

Note If you update a check information through the Polyspace verification environment (see “Review
Run-Time Checks” on page 10-21), when you return to Polyspace Metrics, click Refresh to
incorporate this updated information.

If you want to view check information with reference to check type, from the Group by drop-down
list, select Run-Time Categories .

 Review Overall Progress

10-15

10 Software Quality with Polyspace Metrics

10-16

Displaying Metrics for Single Project Version
To display metrics for a single project version:

1 In the From field, from the drop-down list, select the required project version.
2 In the To field, from the drop-down list, select the same project version.
3 In # items field, enter the maximum number of files for which you want information displayed.

The software displays:

• Bar charts with file defect information, ordering the files according to the number of defects
in each file

• A table with information about the selected project version

 Displaying Metrics for Single Project Version

10-17

Creating File Module and Specifying Quality Level
You can group files into a module and specify a quality level for the module. The quality level applies
to all files within the module. By grouping your files in different modules, you can specify different
quality levels for your files.

To create a module of files:

1 Select a tab, for example, Summary.
2 In the Verification column, expand the node corresponding to the verification that you are

interested. You see the verified files.
3 Select the files that you want to place in a module.
4 Right-click the selected files, and, from the context menu, select Add To Module. The Add to

Module dialog box opens.
5 In the text field, enter the name for your new module, for example, Example_module. Click OK.

You see a new node.

To specify a quality level for the module:

1 Select the row containing the module.
2 Under Software Quality Objectives, click the Level cell.
3 From the drop-down list, select the quality level for your module.

To remove files from a module:

1 Expand the node corresponding to the module.
2 Select the files that you want to remove from the module.
3 Right-click your selection, and from the context menu, select Remove From Module. The

software removes the files from the module. If you remove all files from the module, the software
also removes the module from the tree.

Note You can drag and drop files into and out of folders. For example, you can select back_end and
drag it to Example_module.

10 Software Quality with Polyspace Metrics

10-18

Compare Project Versions
You can compare metrics of two versions of a project.

1 In the From drop-down list, select one version of your project.
2 In the To drop-down list, select a newer version of your project.
3 Select the Compare check box.

In each view, for example, Summary and Run-Time Checks, you see metric differences and tooltip
messages that indicate whether the newer version is an improvement over the older version.

 Compare Project Versions

10-19

Review New Findings
You can specify a project version and focus on the differences between the verification results of your
specified version and the previous verification. For example, consider a project with versions 1.0,
1.1, 1.2, 2.0, and 2.1.

1 In the To field, specify a version of your project, for example, 2.0.
2 Select the New Findings Only check box. In the From field, you see 1.2 in dimmed lettering,

which is the previous verification. The charts and tables now show the changes in results with
respect to the previous verification.

To manage the content of the bar charts, in the # items field, enter the maximum number of files for
which you want information displayed. The software displays file defect information, ordering the
files according to the number of defects in each file.

10 Software Quality with Polyspace Metrics

10-20

Review Run-Time Checks
If you have installed Polyspace on your computer, you can use Polyspace Metrics to review and add
information about run-time checks produced by a verification.

You may use the Review Progress metric in the Summary view to decide when your team of
developers should start work on the next version of the software. For example, you may wait until the
review is complete (Review Progress cell displays 100%), before informing your development team.

Consider an example, where you see the following in the Summary view.

Under Run-Time Errors, click a cell value. This action takes you to the Run-Time Checks view.

The Review Progress column reveals the progress level for each file. Expandsem_ch12.

In the row containing the NIVL (Non-Initialized Local Variable) check, click the value in the red
Checks cell. This action downloads the results and opens the Polyspace user interface. You see the
NIVL check on the Results List tab.

Note If you download results using Internet Explorer 11, it may take a minute or two to open the
Java plug-in and load the Polyspace interface.

To view details in the Result Details pane, double-click the NIVL check.

 Review Run-Time Checks

10-21

On the Result Details pane, using the drop-down list for the Severity field, you can classify the
check as a defect (High, Medium, or Low) or leave the check Unset if you do not consider it a defect.

Using the drop-down list for the Status field, you can assign a status for the check, for example, Fix
or Investigate. When you assign a status, the software considers the check to be reviewed.

If you think that the presence of the check in your code can be justified, select the check box
Justified. In the Comment field, enter remarks that justify this check.

Save the review. See “Saving Review Comments and Justifications” on page 10-22.

Note Classifying a run-time check as a defect or assigning a status for an unreviewed check in the
Polyspace verification environment increases the corresponding metric values (Confirmed Defects
and Review Progress) in the Summary and Run-Time Checks views of Polyspace Metrics.

Specifying Download Folder for Polyspace Metrics
When you click a coding rule violation or run-time check, Polyspace downloads result files from the
Polyspace Metrics web interface to a local folder. You can specify this folder as follows:

1 Select Options > Preferences > Server configuration.
2 If you want to download result files to the folder from which the verification is launched, select

the check box Download results automatically.
3 If this launch folder does not exist, specify another path in the Folder field.

If you do not specify a folder using step 2 or 3, when you click a violation or check, the software
opens a file browser. Use this browser to specify the download location.

Saving Review Comments and Justifications
By default, when you save your project (Ctrl+S), the software saves your comments and justifications
to a local folder. See “Specifying Download Folder for Polyspace Metrics” on page 10-22.

If you want to save your comments and justifications to a local folder and the Polyspace Metrics
repository, select Metrics > Upload to Metrics.

This default behavior allows you to upload your review comments and justifications only when you are
satisfied that your review is, for example, correct and complete.

If you want the software to save your comments and justifications to the local folder and the
Polyspace Metrics repository whenever you save your project (Ctrl+S):

1 Select Tools > Preferences > Server configuration.
2 Select the check box Save justifications in the Polyspace Metrics repository.

Note In Polyspace Metrics, click to view updated information.

10 Software Quality with Polyspace Metrics

10-22

Fix Defects
If you are a software developer, you can begin to fix defects in code when, for example:

• In the Summary view, Review Progress shows 100%
• Your quality assurance engineer informs you

You can use Polyspace Metrics to access defects that you must fix.

Within the Summary view, under Run-Time Errors, click a cell value. This action takes you to the
Run-Time Checks view.

You want to fix defects that are classified as defects. In the Confirmed Defects column, click a non-
zero cell value. Polyspace Code Prover™ opens with the checks visible in Results List tab.

Double-click the row containing a check. In the Result Details pane, you see information about this
check. You can now go to the source code and fix the defect.

 Fix Defects

10-23

Review Code Metrics
Polyspace Metrics generates metrics about your Ada code. These metrics provide the number of:

• Files
• Lines of code
• Packages
• Packages that appear in with statements
• Subprograms that appear in with statements
• Protected shared variables
• Unprotected shared variables

To review code metrics for your project, in the Summary view, click a value in a Code Metrics cell.
The Code Metrics view opens.

10 Software Quality with Polyspace Metrics

10-24

Customizing Software Quality Objectives
In this section...
“About Customizing Software Quality Objectives” on page 10-25
“SQO Level 2” on page 10-25
“SQO Level 3” on page 10-26
“SQO Level 4” on page 10-26
“SQO Level 5” on page 10-26
“SQO Level 6” on page 10-26
“SQO Exhaustive” on page 10-27
“Run-Time Checks Set 1” on page 10-27
“Run-Time Checks Set 2” on page 10-27
“Run-Time Checks Set 3” on page 10-28
“Status Acronyms” on page 10-28

About Customizing Software Quality Objectives
When you run your first verification to produce metrics, Polyspace software uses predefined software
quality objectives (SQO) to evaluate quality. In addition, when you use Polyspace Metrics for the first
time, Polyspace creates the following XML file that contains definitions of these software quality
objectives:
RemoteDataFolder/Custom-SQO-Definitions.xml

RemoteDataFolder is the folder where Polyspace stores data generated by remote verifications. See
“Modify Polyspace Server Configuration” in the Polyspace Installation Guide.

If you want to customize SQOs and modify the way quality is evaluated, you must change Custom-
SQO-Definitions.xml. This XML file has the following form:
<?xml version="1.0" encoding="utf-8"?>
<MetricsDefinitions>
 SQO Level 2
 SQO Level 3
 SQO Level 4
 SQO Level 5
 SQO Level 6
 SQO Exhaustive
 Run-Time Checks Set 1
 Run-Time Checks Set 2
 Run-Time Checks Set 3
 Status Acronym 1
 Status Acronym 2
</MetricsDefinitions>

The following topics provide information about MetricsDefinitions elements and how SQO levels
are calculated. Use this information when you modify or create elements.

SQO Level 2
The default SQO Level 2 element is:
<SQO ID="SQO-2" ParentID="SQO-1">
 <Num_Unjustified_Red>0</Num_Unjustified_Red>

 Customizing Software Quality Objectives

10-25

 <Num_Unjustified_NT_Constructs>0</Num_Unjustified_NT_Constructs>
</SQO>

To fulfill requirements of SQO Level 2, the code must meet the requirements of SQO Level 1 and the
following:

• Number of unjustified red checks Num_Unjustified_Red must not be greater than the threshold
(default is zero)

• Number of unjustified NTC and NTL checks Num_Unjustified_NT_Constructs must not be
greater than the threshold (default is zero)

SQO Level 3
The default SQO Level 3 element is:
<SQO ID="SQO-3" ParentID="SQO-2">
 <Num_Unjustified_Gray>0</Num_Unjustified_Gray>
</SQO>

To fulfill requirements of SQO Level 3, the code must meet the requirements of SQO Level 2 and the
number of unjustified UNR checks must not exceed the threshold (default is zero).

SQO Level 4
The default SQO Level 4 element is:
<SQO ID="SQO-4" ParentID="SQO-3">
 <Percentage_Proven_Or_Justified>
 Runtime_Checks_Set_1
 </Percentage_Proven_Or_Justified>
</SQO>

To fulfill requirements of SQO Level 4, the code must meet the requirements of SQO Level 3 and the
following ratio as a percentage
(green checks + justified orange checks) / (green checks + all orange checks)

must not be less than the thresholds specified by “Run-Time Checks Set 1” on page 10-27.

SQO Level 5
The default SQO Level 5 element is:
<SQO ID="SQO-5" ParentID="SQO-4">
 <Percentage_Proven_Or_Justified>
 Runtime_Checks_Set_2
 </Percentage_Proven_Or_Justified>
</SQO>

To fulfill requirements of SQO Level 5, the code must meet the requirements of SQO Level 4 and the
percentage of green and justified checks must not be less than the thresholds specified by “Run-Time
Checks Set 2” on page 10-27.

SQO Level 6
The default SQO Level 6 element is:
<SQO ID="SQO-6" ParentID="SQO-5">
 <Percentage_Proven_Or_Justified>

10 Software Quality with Polyspace Metrics

10-26

 Runtime_Checks_Set_3
 </Percentage_Proven_Or_Justified>
</SQO>

To fulfill requirements of SQO Level 6, the code must meet the requirements of SQO Level 5 and the
percentage of green and justified checks must not be less than the thresholds specified by “Run-Time
Checks Set 3” on page 10-28.

SQO Exhaustive
The default Exhaustive element is:
<SQO ID="Exhaustive" ParentID="SQO-1">
 <Num_Unjustified_Red>0</Num_Unjustified_Red>
 <Num_Unjustified_NT_Constructs>0</Num_Unjustified_NT_Constructs>
 <Num_Unjustified_Gray>0</Num_Unjustified_Gray>
 <Percentage_Proven_Or_Justified>100</Percentage_Proven_Or_Justified>
</SQO>

Run-Time Checks Set 1
The Run-Time Checks Set 1 is composed of Check elements with data that specify thresholds. The
Name and Type attribute in each Check element defines a run-time check, while the element data
specifies a threshold in percentage. The default structure of Run-Time Checks Set 1 is:
<RuntimeChecksSet ID="Runtime_Checks_Set_1">
 <Check Name="OBAI">80</Check>
 <Check Name="ZDV" Type="Scalar">80</Check>
 <Check Name="ZDV" Type="Float">80</Check>
 <Check Name="NIVL">80</Check>
 <Check Name="NIV">60</Check>
 <Check Name="IRV">80</Check>
 <Check Name="FRIV">80</Check>
 <Check Name="FRV">80</Check>
 <Check Name="OVFL" Type="Scalar">60</Check>
 <Check Name="OVFL" Type="Float">60</Check>
 <Check Name="IDP">60</Check>
 <Check Name="NIP">60</Check>
 <Check Name="POW">80</Check>
 <Check Name="SHF">80</Check>
 <Check Name="COR">60</Check>
 <Check Name="NNR">50</Check>
 <Check Name="EXCP">50</Check>
 <Check Name="EXC">50</Check>
 <Check Name="NNT">50</Check>
 <Check Name="CPP">50</Check>
 <Check Name="OOP">50</Check>
 <Check Name="ASRT">60</Check>
</RuntimeChecksSet>

When you use Run-Time Checks Set 1 in evaluating code quality, the software calculates the following
ratio as a percentage for each run-time check in the set:
(green checks + justified orange checks)/(green checks + all orange checks)

If the percentage values do not exceed the thresholds in the set, the code meets the quality level.

To modify the default set, you can change the check threshold values.

Run-Time Checks Set 2
This set is similar to “Run-Time Checks Set 1” on page 10-27, but has more stringent threshold
values.

 Customizing Software Quality Objectives

10-27

 <RuntimeChecksSet ID="Runtime_Checks_Set_2">
 <Check Name="OBAI">90</Check>
 <Check Name="ZDV" Type="Scalar">90</Check>
 <Check Name="ZDV" Type="Float">90</Check>
 <Check Name="NIVL">90</Check>
 <Check Name="NIV">70</Check>
 <Check Name="IRV">90</Check>
 <Check Name="FRIV">90</Check>
 <Check Name="FRV">90</Check>
 <Check Name="OVFL" Type="Scalar">80</Check>
 <Check Name="OVFL" Type="Float">80</Check>
 <Check Name="IDP">70</Check>
 <Check Name="NIP">70</Check>
 <Check Name="POW">90</Check>
 <Check Name="SHF">90</Check>
 <Check Name="COR">80</Check>
 <Check Name="NNR">70</Check>
 <Check Name="EXCP">70</Check>
 <Check Name="EXC">70</Check>
 <Check Name="NNT">70</Check>
 <Check Name="CPP">70</Check>
 <Check Name="OOP">70</Check>
 <Check Name="ASRT">80</Check>
</RuntimeChecksSet>

Run-Time Checks Set 3
This set is similar to “Run-Time Checks Set 1” on page 10-27, but has more stringent threshold
values.
<RuntimeChecksSet ID="Runtime_Checks_Set_3">
 <Check Name="OBAI">100</Check>
 <Check Name="ZDV" Type="Scalar">100</Check>
 <Check Name="ZDV" Type="Float">100</Check>
 <Check Name="NIVL">100</Check>
 <Check Name="NIV">80</Check>
 <Check Name="IRV">100</Check>
 <Check Name="FRIV">100</Check>
 <Check Name="FRV">100</Check>
 <Check Name="OVFL" Type="Scalar">100</Check>
 <Check Name="OVFL" Type="Float">100</Check>
 <Check Name="IDP">80</Check>
 <Check Name="NIP">80</Check>
 <Check Name="POW">100</Check>
 <Check Name="SHF">100</Check>
 <Check Name="COR">100</Check>
 <Check Name="NNR">90</Check>
 <Check Name="EXCP">90</Check>
 <Check Name="EXC">90</Check>
 <Check Name="NNT">90</Check>
 <Check Name="CPP">90</Check>
 <Check Name="OOP">90</Check>
 <Check Name="ASRT">100</Check>
 </RuntimeChecksSet>

Status Acronyms
When you click a link, StatusAcronym elements are passed to the Polyspace verification
environment. This feature allows you to define, through your Polyspace server, additional items for
the drop-down list of the Status field in Result Details. See “Review Run-Time Checks” on page 10-
21.

Polyspace Metrics provides the following default elements:
<StatusAcronym Justified="yes" Name="Justify with code/model annotations"/>
<StatusAcronym Justified="yes" Name="No action planned"/>

10 Software Quality with Polyspace Metrics

10-28

The Name attribute specifies the name that appears on the Status field drop-down list. If you specify
the Justify attribute to yes, then when you select the item, for example, No action planned, the
software automatically selects the Justified check box. If you do not specify the Justify attribute,
then the Justified check box is not selected automatically.

You can remove the default elements and create new StatusAcronym elements, which are available
to all users of your Polyspace server.

 Customizing Software Quality Objectives

10-29

Tips for Administering Results Repository
In this section...
“Through the Polyspace Metrics Web Interface” on page 10-30
“Through the Command Line” on page 10-30
“Backup of Results Repository” on page 10-31

Through the Polyspace Metrics Web Interface
You can rename or delete projects and verifications.

Project Renaming

To rename a project:

1 In your Polyspace Metrics project index, right-click the row with the project that you want to
rename.

2 From the context menu, select Rename Project.
3 In the Project field, enter the new name.

Project Deletion

To delete a project:

1 In your Polyspace Metrics project index, right-click the row with the project that you want to
delete.

2 From the context menu, select Delete Project from Repository.

Verification Renaming

To rename a verification:

1 Select the Summary view for your project.
2 In the Verification column, right-click the verification that you want to rename.
3 From the context menu, select Rename Run.
4 In the Project field, edit the text to rename the verification.

Verification Deletion

To delete a verification:

1 Select the Summary view for your project.
2 In the Verification column, right-click the verification that you want to delete.
3 From the context menu, select Delete Run from Repository.

Through the Command Line
You can run the following batch command with various options.
Polyspace_Install/polyspace/bin/polyspace-results-repository[.exe]

10 Software Quality with Polyspace Metrics

10-30

• To rename a project or version, use the following options:
[-f] [-server hostname] -rename [-prog old_prog -new-prog new_prog]
[-verif-version old_version -new-verif-version new_version]

• hostname — Polyspace server. localhost if you run the command directly on the server. Can
be omitted if, in the Polyspace Preferences dialog box, on the Server configuration tab, you
have specified a server name. See “Modify Polyspace Client Configuration”.

• old_prog — Current project name
• new_prog — New project name
• old_version — Old version name
• new_version — New version name
• -f — Specifies that a confirmation is not requested

• To delete a project or version, use the following options:
[-f] [-server hostname] -delete -prog prog [-verif-version version]
[-unit-by-unit|-integration]

• hostname — Polyspace server. localhost if you run the command directly on the server. Can
be omitted if, in the Polyspace Preferences dialog box, on the Server configuration tab, you
have specified a server name. See “Modify Polyspace Client Configuration”.

• prog — Project name
• version — Version name. If omitted, all versions are deleted
• unit-by-unit|-integration — Delete only unit-by-unit or integration verifications
• -f — Specifies that a confirmation is not requested

• To get information about other commands, for example, retrieve a list of projects or versions, and
download and upload results, use the -h option.

Example 10.1. Renaming and Deletion Examples

To change the name of the project psdemo_model_link_sl to Track_Quality:
polyspace-results-repository.exe -prog psdemo_model_link_sl
-new-prog Track_Quality -rename

To delete the fifth verification run with version 1.0 of the project Track_Quality:
polyspace-results-repository.exe -prog Track_Quality -verif-version 1.0
-run-number 5 -delete

To rename verification 1.2 as 1.0:
polyspace-results-repository.exe -prog Track_Quality -verif-version 1.2
-new-verif-version 1.0 -rename

To rename the fourth verification run with version 1.0 as version 0.4:
polyspace-results-repository.exe -prog Track_Quality -verif-version 1.0
-run-number 4 -new-verif-version 0.4 -rename

Backup of Results Repository
To preserve your Polyspace Metrics data, create a backup copy of the results repository
Polyspace_RLDatas/results-repository — Polyspace_RLDatas is the path to the folder
where Polyspace stores data generated by remote verifications. See “Configure the Polyspace
Server”.

 Tips for Administering Results Repository

10-31

For example, on a Linux system, do the following:

1 $cd Polyspace_RLDatas
2 $zip -r Path_to_backup_folder/results-repository.zip results-repository

If you want to restore data from the backup copy:

1 $cd Polyspace_RLDatas
2 $unzip Path_to_backup_folder/results-repository.zip

10 Software Quality with Polyspace Metrics

10-32

Verifying Code in the Eclipse IDE

• “Install Polyspace Plug-In for Eclipse IDE” on page 11-2
• “Configure Verification” on page 11-5
• “Run Verification” on page 11-6
• “Review Results” on page 11-8

11

Install Polyspace Plug-In for Eclipse IDE
You can install the Polyspace plug-in only if you have already set up the Eclipse Integrated
Development Environment (IDE). For information about downloading and installing the Eclipse IDE,
go to www.eclipse.org.

In addition to the Eclipse IDE, you must have:

• The GNATbench 2.5.1 plug-in. For more information, go to www.adacore.com.
• A GNAT compiler, a free compiler for Ada95 that is integrated into the GCC compiler system. For

more information, go to www.gnu.org/software/gnat/.

Note On a Windows system, the GNATbench plug-in supports only the 32-bit version of the Eclipse
IDE. Therefore, on a 64-bit Windows machine, you must install the 32-bit version of the Polyspace
product. From a DOS command window, run the following command:

DVD\Installer32bits\Windows\Disk1\InstData\VM\Polyspace.exe

To install the Polyspace plug-in:

1 From the Eclipse editor, select Help > Install New Software. The Install wizard opens,
displaying the Available Software page.

2 Click Add, which opens the Add Repository dialog box.
3 In the Name field, specify a name for your Polyspace site, for example, Polyspace_13a.
4 Click Local, which opens the Browse for Folder dialog box.
5 Navigate to the Polyspace_Install\polyspace\plugin\eclipse folder. Then click OK.
6 Click OK, which closes the Add Repository dialog box.
7 On the Available Software page, select Polyspace Plugin for Eclipse.

11 Verifying Code in the Eclipse IDE

11-2

https://www.eclipse.org
https://www.adacore.com
https://www.gnu.org/software/gnat/

8 Click Next.
9 On the Install Details page, click Next.
10 On the Review Licenses page, review and accept the license agreement. Then click Finish.

Once you install the Polyspace plug-in, in the Eclipse editor, you have access to:

• A Polyspace menu
• A Polyspace Run view

See Also

Related Examples
• “Configure Verification” on page 11-5

 Install Polyspace Plug-In for Eclipse IDE

11-3

• “Run Verification” on page 11-6
• “Review Results” on page 11-8

11 Verifying Code in the Eclipse IDE

11-4

Configure Verification
This example shows how to set up a Polyspace verification within the Eclipse Integrated Development
Environment (IDE). You can run verification on Ada code and review the verification results without
leaving the Eclipse environment.

Before running verification, you can change the default values of the verification options.

Prerequisites
Before you configure your Polyspace verification, you must do the following:

• Install the Polyspace plugin for Eclipse.

See “Polyspace Plugin Requirements” and “Install Polyspace Plug-In for Eclipse IDE” on page 11-
2.

• Set up an Eclipse project containing the source code that you want to verify.

See Eclipse documentation.

Specify Verification Options
To configure your verification:

1 In Project Explorer, select the project or files that you want to verify.
2 Select Polyspace > Configure Project to open the Configuration pane in the Polyspace user

interface.
3 Select your verification options. For more information, see “Analysis Options”.
4 Save your options and close the pane.

Next Steps
After you configure your project, you are ready to run verification. See “Run Verification” on page 11-
6.

 Configure Verification

11-5

https://www.eclipse.org/

Run Verification
This example shows how to run a Polyspace verification within the Eclipse Integrated Development
Environment (IDE).

Prerequisites
Before you run Polyspace verification, you must do the following:

• Install the Polyspace plugin for Eclipse.

See “Install Polyspace Plug-In for Eclipse IDE” on page 11-2.
• Set up an Eclipse project for the source code that you want to verify. Configure Polyspace
verification for the project.

See “Configure Verification” on page 11-5.

Start, Monitor and Stop Verification
You can start a Polyspace verification from the Eclipse editor.

1 Switch to the Polyspace perspective.

a Select Window > Open Perspective > Other.
b In the Open Perspective dialog box, select Polyspace.

This allows you to view only the information related to a Polyspace verification.
2 To start a verification, do one of the following:

• In the Project Explorer, right-click the project containing the files that you want to verify
and select Run Polyspace.

• In the Project Explorer, select the project containing the files that you want to verify. From
the global menu, select Polyspace > Run.

3 Follow the progress of the verification in the Polyspace Run view.

If you see an error or warning during the compilation phase, double-click it to go to the
corresponding location in the source code. Once the verification is over, the results are displayed
in the Results List view.

4 To stop a verification, select Polyspace > Stop. Alternatively you can use the button in the
Polyspace Run view.

The Polyspace files for your Eclipse project, including results and Polyspace configuration files, are
saved in the following folder:

Polyspace_Workspace\Projects\EclipseProjects\Eclipse Project Name

Here:

• Eclipse Project Name is the name of your Eclipse project.

11 Verifying Code in the Eclipse IDE

11-6

• Polyspace_Workspace is the location where your Polyspace files are stored. You specify this
location on the Project and Results Folder tab in your Polyspace preferences (Tools >
Preferences in the Polyspace user interface).

Next Steps
After you run a verification in Eclipse, your results open automatically on the Results List view. You
have to review each result and determine whether to fix your code or justify the result. See “Review
Results” on page 11-8.

 Run Verification

11-7

Review Results
This example shows how to review the results of a Polyspace verification within the Eclipse
Integrated Development Environment (IDE).

After you run a verification in Eclipse, your results open automatically on the Results List view. You
have to review each result and determine whether to fix your code or justify the result.

Prerequisites
To see results from a Polyspace verification, you must do the following:

• Install the Polyspace plugin for Eclipse.

See “Install Polyspace Plug-In for Eclipse IDE” on page 11-2.
• Set up an Eclipse project for the source code that you want to verify. Configure Polyspace
verification for the project and run verification.

See “Run Verification” on page 11-6.

Review Results
1 Select a check to see detailed information on the Result Details view.
2

In the Result Details view, to see a brief description and examples of the result, click the
button next to the result name.

3 If you close Eclipse or run Polyspace on another Eclipse project, your results are closed. To
reopen the results for an Eclipse project, select the project in the Project Explorer and from the
global menu, select Polyspace > Reload Results.

Save Multiple Results
The results in Eclipse are overwritten every time a new verification is performed. However, Polyspace
automatically imports Status, Severity, and Comment information to the new verification results. If
you want to save your earlier results:

1 Select Polyspace > Open Results in PVE to open your results in the Polyspace user interface.
2 Save your results from the Polyspace user interface.

If you have setup Polyspace Metrics, upload your results to the web dashboard. For more
information, see “Generate Code Quality Metrics”.

In addition to the Results List and Result Details views available in Eclipse, in the Polyspace user
interface, you can use other views to:

• View tooltips with information about variable ranges.
• Navigate the call hierarchy easily in your source code.

11 Verifying Code in the Eclipse IDE

11-8

Glossary

Atomic In computer programming, the adjective atomic describes a unitary
action or object that is essentially indivisible, unchangeable, whole,
and irreducible.

Batch mode Execution of Polyspace from the command line rather than through
the Polyspace user interface.

Category One of four types of orange check: potential bug, inconclusive check,
data set issue and basic imprecision.

Certain error See ”red check.”

Check A test performed by Polyspace during a verification and subsequently
colored red, orange, green or gray in the Run-Time Checks
perspective.

Code Verification The Polyspace process through which code is tested to reveal definite
and potential runtime errors and a set of results is generated for
review.

Dead Code Code which is inaccessible at execution time due to the logic of the
software executed prior to it.

Development Process The process used within a company to progress through the software
development lifecycle.

Green check Code has been proven to be free of runtime errors.

Gray check Unreachable code; dead code.

Imprecision Approximations are made during a Polyspace verification, so data
values possible at execution time are represented by supersets
including those values.

Orange check A warning that represents a possible error which may be revealed
upon further investigation.

Polyspace Approach The manner of use of Polyspace to achieve a particular goal, with
reference to a collection of techniques and guiding principles.

Precision A verification which includes few inconclusive orange checks is said to
be precise

Progress text Output from Polyspace during verification that indicates what
proportion of the verification has been completed. Could be
considered to be a “textual progress bar”.

Red check Code has been proven to contain definite runtime errors (every
execution will result in an error).

Review Inspection of the results produced by a Polyspace verification.

Scaling option Option applied when an application submitted to Polyspace Server
proves to be bigger or more complex than is practical.

Glossary-1

Selectivity The ratio (green checks + gray checks + red checks) / (total amount
of checks)

Unreachable code Dead code.

Verification The Polyspace process through which code is tested to reveal definite
and potential runtime errors and a set of results is generated for
review.

Glossary

Glossary-2

	Introduction to Polyspace Products
	Overview of Polyspace Verification
	The Value of Polyspace Verification
	Enhance Software Reliability
	Decrease Development Time
	Improve the Development Process

	How Polyspace Verification Works
	What is Static Verification
	Exhaustiveness

	How to Use Polyspace Software
	Polyspace Verification and the Software Development Cycle
	Software Quality and Productivity
	Best Practices for Verification Workflow

	Implementing a Process for Polyspace Verification
	Overview of the Polyspace Process
	Defining Quality Goals
	Defining a Verification Process to Meet Your Goals
	Applying Your Verification Process to Assess Code Quality
	Improving Your Verification Process

	Sample Workflows for Polyspace Verification
	Overview of Verification Workflows
	Software Developers – Standard Development Process
	Software Developers – Rigorous Development Process
	Quality Engineers – Code Acceptance Criteria
	Project Managers — Integrating Polyspace Verification with Configuration Management Tools

	Setting Up a Verification Project
	Create Project
	Create Project
	Specify Analysis Options
	Specify Results Folder

	Create Project Using Template
	Use Predefined Template
	Create Your Own Template

	Update Project
	Add Source and Include Folders
	Manage Include File Sequence
	Change Analysis Options

	Modularize Project
	Create New Module
	Create Configurations in Module

	Organize Layout of Polyspace User Interface
	Create Your Own Layout
	Save and Reset Layout

	Customize Results Location and Folder Name
	Specify External Text Editor
	Change Default Font Size
	Choosing Contextual Verification Options
	Setting Up Project to Generate Metrics
	About Polyspace Metrics
	Enabling Polyspace Metrics
	Specifying Automatic Verification

	Emulating Your Run-Time Environment
	Target & Compiler Overview
	Specifying Target & Compiler Parameters
	Predefined Target Processor Specifications
	Main Generator Overview
	Automatically Generating a Main
	Manually Generating a Main
	How Polyspace Verifies Generic Packages
	Specifying Constraints Using Text Files
	Constraint File Format
	Tips for Creating Constraint Files
	Example Constraint File
	Warning Messages Related to Constraints

	Effect of External Constraints on Polyspace Analysis
	Stubbed Functions
	Stubbed Procedures

	Performing Efficient Module Testing with Constraints
	Reducing Orange Checks with External Constraints
	Using Pragma Assert to Set Data Ranges
	Supported Ada Pragmas
	How Polyspace Evaluates Function and Procedure Parameters

	Preparing Source Code for Verification
	Stubbing Overview
	Manual vs. Automatic Stubbing
	Deciding which Stub Functions to Provide
	Summary

	Automatic Stubbing
	Polyspace Software Assumptions
	Scheduling Model
	Example
	Launching Command
	Limitation

	Modelling Synchronous Tasks
	Problem
	Explanation
	Solution 1
	Solution 2

	Interruptions and Asynchronous Events/Tasks
	Problem
	Explanation
	My interrupts it1 and it2 cannot preempt each other
	My interruptions can preempt each other

	Are Interruptions Maskable or Preemptive by Default?
	Problem
	Explanation
	Solution
	Original Packages
	Extra Packages
	Command Line to Open Polyspace User Interface

	Mailboxes
	Problem
	Explanation
	Solution
	package mailboxes
	package body mailboxes
	procedure receive
	task body task_1

	Atomicity
	Definitions
	Instructional Decomposition
	Critical Sections and Temporal Exclusion

	Priorities

	Running a Verification
	Run Local Verification
	Start Verification
	Monitor Progress
	Stop Verification
	Open Results

	Run Remote Verification
	Start Verification
	Monitor Progress
	Stop Verification
	Open Results

	Phases of Verification
	Run File-by-File Local Verification
	Run Verification
	Open Results

	Run File-by-File Remote Verification
	Run Verification
	Open Results

	Manage Job Monitor
	Purge Server Queue
	Change Job Monitor Password
	Share Server Verifications Between Users

	Run Local Verification at Command Line
	Run Remote Verification at Command Line
	Start Verification
	Manage Verification
	Download Verification Results from Server

	Create Command-Line Script from Project File
	Generate Scripting Files
	Run an Analysis

	Troubleshooting Verification
	Hardware Does Not Meet Requirements
	Location of Included Files Not Specified
	Polyspace Software Cannot Find the Server
	Limit on Assignments and Function Calls
	Examining the Compile Log
	Common Compile Errors
	Missing specification for unit
	Calendar not found
	Not a predefined library unit
	representation clause appears too late
	Package system and standard include
	Unsigned type
	Function not declared in package
	pre-elaborated unit
	actual must be a definite subtype
	'ref attribute
	Cannot load s-dec.ads (unit not found)
	Green Hills standard include
	Package Analysis Limitation
	Ambiguous Bounds in Discrete Range

	Error from Special Characters
	Issue
	Cause
	Workaround

	Verification Time Considerations
	Displaying Verification Status Information
	Ideal Application Size
	Optimum Size
	Selecting a Subset of Code
	Results
	Examples of Removable Components
	Subdivide According to Data Flow
	Subdivide According to Real-Time Characteristics
	Subdivide According to Files

	Benefits of Methods
	When the Application is Incomplete
	Application Code Size

	Obtaining Configuration Information
	Reasons for Unchecked Code
	Issue
	Possible Cause: Early Red or Gray Check
	Possible Cause: Incorrect Options

	Storage of Temporary Files
	Disk Defragmentation and Antivirus Software
	Out-of-Memory Errors During Report Generation

	Reviewing Verification Results
	Polyspace Check Colors
	Verification Following Red and Orange Checks
	Verification Following Red Check
	Green Check Following Orange Check
	Gray Check Following Orange Check

	Project and Results Folder Contents
	Files in the Results Folder

	Result Views in Polyspace User Interface
	Results List
	Source
	Result Details
	Variable Access
	Call Hierarchy
	Concurrency Modeling

	Why Review Dead Code Checks
	Functional Bugs in Gray Code
	Structural Coverage

	Review Red Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check

	Review Gray Checks
	Review Orange Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check
	Step 3: Trace Check to Polyspace Assumption

	Review Global Variable Usage
	CWE Coding Standard and Polyspace for Ada Results
	CWE and Polyspace for Ada
	Find CWE IDs from Polyspace Results

	Add Review Comments to Results
	Assign and Save Comments
	Import Review Comments from Previous Verifications

	Justify Results Through Code Annotations
	Add Annotations from the User Interface
	Type Annotations Directly in Your Code
	Syntax Examples

	Define Custom Annotation Format
	Define Annotation Syntax Format
	Map Your Annotation to the Polyspace Annotation Syntax

	Annotation Description Full XML Template
	Example

	Add Review Comments to Code
	Enter Code Comments in Specific Syntax
	Copy Comment Syntax from Polyspace User Interface

	Filter and Group Results
	Filter Results
	Group Results

	Prioritize Check Review
	Generate Report
	Specify Report Generation Before Verification
	Generate Report After Verification

	Export Results to Text File
	Export Results
	View Exported Results
	Generate Graphs from Results

	Export Global Variable List
	Export Variable List to Text File
	View Exported Variable List

	Customize Report Templates
	Create Custom Template
	Apply Global Filters in Template
	Override Global Filters
	Use Custom Template

	Set Character Encoding Preferences

	Managing Orange Checks
	What Is an Orange Check?
	Sources of Orange Checks
	Orange Checks from Code
	Orange Checks from Verification Limitations

	Do I Have Too Many Orange Checks?
	Limit Display of Orange Checks
	Reduce Orange Checks
	Improve Verification Precision
	Apply Coding Guidelines
	Stub Parts of the Code Manually
	Specify Multitasking Behavior

	Software Quality with Polyspace Metrics
	Software Quality with Polyspace Metrics
	Setting Up Verification to Generate Metrics
	Specifying Automatic Verification

	View Polyspace Metrics Project Index
	Organize Polyspace Metrics Projects
	Protect Access to Project Metrics
	Monitor Verification Progress
	Web Browser Support
	Review Overall Progress
	Displaying Metrics for Single Project Version
	Creating File Module and Specifying Quality Level
	Compare Project Versions
	Review New Findings
	Review Run-Time Checks
	Specifying Download Folder for Polyspace Metrics
	Saving Review Comments and Justifications

	Fix Defects
	Review Code Metrics
	Customizing Software Quality Objectives
	About Customizing Software Quality Objectives
	SQO Level 2
	SQO Level 3
	SQO Level 4
	SQO Level 5
	SQO Level 6
	SQO Exhaustive
	Run-Time Checks Set 1
	Run-Time Checks Set 2
	Run-Time Checks Set 3
	Status Acronyms

	Tips for Administering Results Repository
	Through the Polyspace Metrics Web Interface
	Through the Command Line
	Backup of Results Repository

	Verifying Code in the Eclipse IDE
	Install Polyspace Plug-In for Eclipse IDE
	Configure Verification
	Prerequisites
	Specify Verification Options
	Next Steps

	Run Verification
	Prerequisites
	Start, Monitor and Stop Verification
	Next Steps

	Review Results
	Prerequisites
	Review Results
	Save Multiple Results

	Glossary

